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Introduction: energy eigenstate controllability of molecular

systems

We saw that the matrix elements of the dipole moment operator,
〈i |µ|j〉 determine the selection rules for light-induced transitions in
atoms and molecules

However, we also saw that direct (one photon) transitions between
energy levels are not the only route for “state-to-state” transitions

What are the analog of “selection rules” for multiphoton transitions?

More generally, what determines if a initial wavefunction |ψ(0)〉 can
be driven to any arbitrary final state |ψ〉 (at time T )?

Subject is called controllability
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Reachable set

Reachable set

The reachable set R(x0,T ) at time T is the set of states x(T ) that can
be reached from x0 (the initial state) by an admissible control

The complete reachable set R(x0) =
⋃

T>0 R(x0,T )
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Controllability

Full controllability

A control system is (fully) controllable (at time T ) if the reachable set
R(x0,T ) is equal to the state manifold.

For unitary propagator (operator) quantum control, full
controllability means R(ψ0,T ) = U(N)

For pure state control, full controllability means R(U0,T ) = SHN

Controllability theory does not rest on use of any particular cost
functional, but sufficient conditions for controllability are sometimes
conveniently derived using Lagrange functionals (with final state
specified)
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Formal solution to general linear systems

Obtain the formal solution to the linear vector differential equation
dx
dt

= Ax(t) + Bu(t) in two steps:
1 Solve the homogeneous differential equation dx

dt
= Ax(t); this

provides a reference frame moving with x(t) in absence of control
2 Rotate x(t) to this reference frame; this produces a differential

equation for y(t) = U−1(t)x(t); solve it by direct integration and
then rotate back to the original reference frame

We know the solution to the homogeneous equation is
x(t) = exp(At)x(0) (matrix exponential) and the time evolution
propagator U(t) = exp(At) satisfies dU

dt
= AU(t)

For the second step, use U̇−1(t) = −U−1(t)A; hence
U̇−1(t)x(t) = −U−1(t)Ax(t)

d

dt

(

U−1(t)x(t)
)

= U−1(t)
dx

dt
+ U̇−1(t)x(t) =

U−1(t)[Ax(t) + Bu(t)] − U−1(t)Ax(t)

So d
dt

(

U−1(t)x(t)
)

= U−1(t)Bu(t) or

x(T ) = U(T )x(0) + U(T )

∫ T

0

U−1(t)Bu(t) dt



Formal solution to general linear systems: Laplace
transform

Consider solution of the general first-order scalar ode with constant

coefficients: dx(t)
dt

= ax(t) + bu(t) with general, unknown control
function u(t) (not necc optimal for quadratic cost), via Laplace
transforms

L[ dx(t)
dt

] = L[ax(t) + bu(t)]

Generalize to system of first-order linear odes

(sI − A)x(s) = x(0) + Bu(s)

x(s) = (sI − A)−1[x(0) + Bu(s)]

Inverse LT gives

x(T ) = U(T )x(0) + U(T )

∫ T

0

U−1(t)Bu(t) dt

(compare L−1[x(s)] = L−1
[

x(0)+bu(s)
s−a

]

for scalar x)
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Full controllability of time-invariant linear systems

For linear control systems, it is a simple matter to assess full (state)
controllability; find conditions that guarantee that x(T ) can be
driven to 0 (since transferring system from any initial state to any
final state may be put in this form by placing origin of state vector
at desired target state)

x(T ) = 0 = exp(AT )x0 +

∫ T

0

exp(A(T − t ′))Bu(t ′) dt ′

= exp(AT )

[

x(0) +

∫ T

0

exp(−At ′)Bu(t ′) dt ′

]

(recall u(t) for linear systems is m-component vector of controls, B
is N ×m matrix)
According to the Cayley-Hamilton theorem, instead of Taylor
expanding the matrix exponentials, we may represent them as matrix
polynomials with at most N − 1 terms:

exp(−At) = a0(t)IN + a1(t)A + a2(t)A
2 + · · ·+ aN−1(t)A

N−1

where each ai (t) is a scalar function of t and the eigenvalues of ACHE 597 Controllability and observability
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The (time-invariant) controllability matrix

So we have (left multiplying by exp(−AT ))

−x(0) = B

∫ T

0

a0(t
′)u(t ′) dt ′ + AB

∫ T

0

a1(t
′)u(t ′) dt ′ + · · ·+

+ AN−1B

∫ T

0

∫ T

0

aN−1u(t
′) dt ′

Can write as
[B,AB, · · · ,AN−1B][

∫ T

0 a0(t
′)u(t ′) dt ′, · · · ,

∫ T

0 aN−1(t
′)u(t ′) dt ′]T

(note latter is Nm-dim vector since u is m-dim)

The N × Nm controllability matrix is [B,AB, · · · ,AN−1B]. If it is
nonsingular (has N linearly independent rows/columns; or N nonzero
singular values; or rank is N), the system is fully controllable since
we can solve for u(t) from this system of equations and
independently drive all N elements of x(T ) to 0

Check rank condition by singular value decomposition of
controllability matrix (matrix is square only for one control)
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Rank condition: numerical methods

Singular value decomposition

Recall the definition of singular value decomposition: for an N ×m

matrix A, the singular value decomposition is

A = USV T ,

where U is an N ×m orthogonal matrix, S is a m ×m diagonal matrix,
and V is a m ×m orthogonal matrix. The singular values of A are the
diagonal elements s1, · · · , sm; si = +

√
λi , where λi are the eigenvalues of

B = ATA.

Columns of U (left singular vectors of A) corresponding to si 6= 0 are
orthonormal basis vectors for the vector space spanned by the
columns of A (range of A)

This method for constructing an orthonormal basis is much more
numerically stable than standard Gram-Schmidt orthogonalization
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Controllability of time-invariant linear systems

Use a quadratic Lagrange cost L(u(t)) = uT (t)u(t) with a terminal
state constraint xf

Recall the form of the optimal control for the temperature control
problem; generalize to vector linear system: ū(t) = −BTφ(t)

Similarly generalize the costate differential equations:
dφ(t)
dt

= −ATφ(t)

Generalize φ(t) solution as φ(t) = exp(AT (T − t))φ(T )

Then the state system of odes becomes:
dx
dt

= Ax(t)− BBT exp(AT (T − t))φ(T ) or
dx
dt

= Ax(t)− BBTUT (T , t)φ(T )



Controllability of time-invariant linear systems

Use the explicit solution for the linear system of odes above:

x(t) = U(t)x(0)− U(t)

(
∫ t

0

U−1(t ′)BBTUT (T , t ′) dt ′
)

φ(T )

= U(t)x(0)−
(
∫ t

0

U(t, t ′)BBTUT (t, t ′) dt ′
)

φ(T );

solve for φ(T ) given known x(T ):

φ(T ) =

(

∫ T

0

U(T , t ′)BBTUT (T , t ′) dt ′

)−1

(U(T )x(0)− xf )

Then substituting φ(T ), obtain
ū(t) = BTUT (t, t)G−1(T )[xf − U(T )x(0)]; condition for full
controllability at time T is that the N × N controllability Gramian

G(T ) =

∫ T

0

U(T , t ′)BBTUT (T , t ′) dt ′

is nonsingular



Local controllability

For (time-varying) nonlinear systems (i.e., dx
dt

= F (x , u)), there are
no general rules for assessing full (state) controllability

Must generally limit to local controllability, i.e., whether there exists
a control perturbation δu(t) that can achieve any arbitrary small
perturbation from a nominal (reference) trajectory

Denoting the reference trajectory by xr (t) and the perturbed
trajectory by x(t), we have

x(T ) = xr (T ) + U(T )δx(0) +

∫ T

0

U(T , t ′)B(t ′)δu(t ′) dt ′

where B(t ′) denotes the N ×m Jacobian matrix ∂F
∂u(t) and

U(T ) = T exp[
∫ T

0
∂F

∂x(t) dt] is N × N (both partial Jacobians

evaluated at x = 0, u = 0)

Local controllability is equivalent to the ability to drive all
components of x(T ) to 0 by appropriate choice of δu(t) over the
interval 0,T
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Local controllability (cont’d)

A sufficient condition for local controllability is that the N × N

controllability Gramian matrix

G(T ) =

∫ T

0

U(T , t ′)B(t ′)BT (t ′)UT (T , t ′) dt ′

is nonsingular

This follows because the control perturbation δu(t) necessary to
drive x(T ) to zero is
δu(t) = BT (t)UT (T , t)G−1(T )[−xr (T )− U(T )δx(0)] (note can
set δx(0) = 0 if interested in control perturbations alone)

Note that for linear time-variant systems, the controllability
condition is derived as above but setting xr (t) = 0

However, for bilinear systems (a particular class of nonlinear
systems), full controllability criteria exist
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Controllability versus optimality of controls

Optimal control theory seeks to maximize a cost function that may
contain a contribution from the state as well as the control

For Bolza and Mayer cost functionals, optimality of the control does
not imply that a desired state is reachable.

For Lagrange functionals, generally check controllability/reachability
before imposing a terminal state constraint.

If the system is uncontrollable, numerical algorithms may never
achieve perfect objective function fidelity!
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Observability of time-variant linear systems

Consider the time-variant linear system dx
dt

= A(t)x(t) in the
absence of control, with formal solution x(t) = U(t)x0

Consider a linear observer y(t) = C (t)x(t) = C (t)U(t)x0, where
C (t) is m × N

The aim is to solve for x0 by making m observations y(t) at each
time t

To obtain a sufficient condition for this solution to exist, left-multiply
the observation equation by UT (t)CT (t) and integrate over all time:

∫ T

0

UT (t)CT (t)y(t) dt =

∫ T

0

UT (t)CT (t)C (t)U(t) dt x0

Let H(T ) =
∫ T

0 UT (t)CT (t)C (t)U(t) dt; note it is an N × N

Gramian matrix. Now solve for x0:

x0 = H−1(T )

∫ T

0

UT (t)CT (t)y(t) dt

H is called the observability Gramian matrix.



Observability of time-invariant linear systems: rank
condition

Observability: Does there exist an observation sequence y(t),
0 ≤ t ≤ T , such that we can identify any x(0)? (note duality
between controls (inputs) and observations (outputs))
Consider the time-variant linear system dx

dt
= Ax(t) in the absence of

control, with formal solution x(t) = U(t)x0, with Bolza cost

J =
∫ T

0
xT (t)Qx(t) dt + 1

2x
T (T )S(T )x(T ), Q > 0 and QT = Q

(the reason for notation S(T ) for endpoint weighting matrix will
become clear below)

dx

dt
= Ax

dφ

dt
= −Qx − ATφ

Solve formally for φ(t):

φ(t) = exp[AT (T−t)]φ(T )+

∫ T

t

exp[AT (T−t ′)]Q exp[AT t ′]x(t) dt ′

φ(0) = exp[ATT ]φ(T ) +

∫ T

0

exp[AT t ′]Q exp[At ′]x(0) dt ′
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Observability of time-invariant linear systems: rank

condition

dx

dt
= Ax

y =
√

Qx

=
√

Q exp(At)x0

φ(0) = exp[ATT ]φ(T ) +

∫ T

0

exp[AT t ′]Q exp[At ′]x(0) dt ′

x(0) =

[

∫ T

0

exp[ATt ′]Q exp[At ′] dt ′

]−1
[

φ(0)− exp[ATT ]φ(T )
]
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Observability of time-invariant linear systems: rank

condition (cont)

Compare BR−1BTλ for Bu: now
√
Q

T√
Qx ; express in terms of

y =
√
Qx :

√
Q

T
(
√
Qx)

m-component vector y is nothing but analog (dual) of control vector
u

dφ

dt
=
√

Q
T
y + ATφ

Formally,

φ(0)− exp[ATT ]φ(T ) =

∫ T

0

exp[AT t]
√

Q
T
y(t) dt

=

∫ T

0

exp[AT t]
√

Q
T√

Qx(t) dt,

although actual reconstruction of x(0) requires measurement
outcomes y(t); φ formulation useful only for observability assessment
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Observability of time-invariant linear systems: rank
condition (cont)

Setting φ(T ) = 0,

φ(0) = CT

∫ T

0

a0(t
′)y(t ′) dt ′ + ATCT

∫ T

0

a1(t
′)y(t ′) dt ′ + · · ·+

+ (AT )N−1C

∫ T

0

∫ T

0

aN−1y(t
′) dt ′

Since for linear systems there is a one-to-one correspondence
between φ(0) and x(0) (see above), if this equation can be solved
for y(t) the system is observable
Can write as
[CT ,ATCT , · · · , (AT )N−1CT ][

∫ T

0
a0(t

′)y(t ′) dt ′, · · · ,
∫ T

0
aN−1(t

′)y(t ′) dt ′]T

(note latter is Nm-dim vector since y is m-dim)
The N × Nm observability matrix is [CT ,ATCT , · · · , (AT )N−1CT ].
If it is nonsingular (has N linearly independent rows/columns; or N
nonzero singular values; or rank is N), the system is fully
controllable since we can solve for y(t) from this system of
equations and independently identify all elements of x(0)
Check rank condition by singular value decomposition of
observability matrix (matrix is square only for one component
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Controllability of bilinear systems

Consider the general bilinear control system:

dx(t)

dt
=

[

A+
∑

i

Biui(t)

]

x(t)
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Controllability of bilinear systems

Consider the general bilinear control system:

dx(t)

dt
=

[

A+
∑

i

Biui(t)

]

x(t)

Note we assume the possibility of multiple controls (e.g.,
components of the electric or magnetic field) with associated
Hamiltonians Bi , 1 ≤ i ≤ m
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Controllability of bilinear systems

Consider the general bilinear control system:

dx(t)

dt
=

[

A+
∑

i

Biui(t)

]

x(t)

Note we assume the possibility of multiple controls (e.g.,
components of the electric or magnetic field) with associated
Hamiltonians Bi , 1 ≤ i ≤ m

Control consists of applying each control Hamiltonian Bi with
amplitude ui (t), generally in unison, at each time interval dt
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Controllability of bilinear systems

Consider the general bilinear control system:

dx(t)

dt
=

[

A+
∑

i

Biui(t)

]

x(t)

Note we assume the possibility of multiple controls (e.g.,
components of the electric or magnetic field) with associated
Hamiltonians Bi , 1 ≤ i ≤ m

Control consists of applying each control Hamiltonian Bi with
amplitude ui (t), generally in unison, at each time interval dt

The important feature of bilinear control systems that makes their
controllability easier to assess than general nonlinear control systems
is the fact that the solution to the ode can be formally expressed as
a matrix exponential
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Controllability of bilinear systems

Definition

A Lie algebra L is a vector space over a field F (here, real or complex
numbers) together with a bilinear operation [·, ·] : L×L → L called a Lie

bracket that satisfies the following conditions:

1 Bilinearity: [x + z , y ] = [x , y ] + [z , y ], [x , y + z] = [x , y ] + [x , z];
α[x , y ] = [αx , y ] = [x , αy ]

2 Skew-symmetry: [x , y ] = −[y , x ]

3 Jacobi identity: [x , [y , z]] = −([z , [x , y ]] + [y , [z , x ]])

We will be concerned with Lie algebras where x , y are N × N

matrices A,B and the Lie bracket is the commutator
[A,B] = AB − BA, with the field F = R. The matrices we are
concerned with are skew-Hermitian, i.e., A† = −A. The Lie algebra
u(N) is the set of skew-Hermitian matrices together with the
commutator.

In this case, the matrix exponential exp(A) is an element of the
associated Lie group (see hw for further definitions).

Dynamical propagators in quantum mechanics are members of the
unitary Lie group U(N)



Application of BCH theorem

The application of a single control Hamiltonian Bi (or A+
∑

i uiBi )
with amplitude ui for time ∆t produces time evolution
exp

(

− i
~
ui(t)Bi∆t

)

(for qc systems)

This corresponds to (we call this) “motion in direction iBi ; use
notation iBi 7→ Bi

Can we only move system along directions corresponding to sums
A+

∑

i uiBi?

No - non-commuting Hamiltonians produce new directions:

exp(Bj∆t) exp(Bi∆t) = exp

{

Bi∆t + Bj∆t+

[Bi∆t,Bj∆t] +
1

2!
[Bi∆t, [Bi∆t,Bj∆t]]+

1

3!
[Bi∆t, [Bi∆t, [Bi∆t,Bj∆t]] + · · ·

}

Each commutator [Bi1 , [Bin−1 ,Bin ]] · · · is a new direction

For arbitrarily shaped controls, the system may be driven in any of
these directions by appropriate choice of ui (t) (we will prove this as
a homework problem)
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Repeated Lie brackets

Definition

The Lie algebra generated by {A1, · · · ,An}, where Ai ∈ g , a Lie algebra,
is the subalgebra of g spanned by {A1, · · · ,An} and all their repeated
commutators. We denote this Lie algebra by {A1, · · · ,An}LA.

The linear span of the (possibly complex) matrices {A1, · · · ,An} is
the set of all matrices

∑

i ciAi with coefficients ci ∈ R.

If A1, · · · ,An are control Hamiltonians (i.e., for finite-dimensional
quantum control systems, g = u(N) or su(N)), the generated Lie algebra
is called the dynamical Lie algebra L of the control system.

Definition

A repeated Lie bracket is a Lie bracket of the form [An, · · · , [A2,A1]].
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Lie algebra rank condition

Dynamical Lie algebra

The dynamical Lie algebra L = su(N) (L = u(N)) (i.e., the system is
fully operator controllable; if the rank of the Lie algebra spanned by
{A1, · · · ,An} and all their repeated commutators is N2 − 1 (N2).

The proof follows from application of the BCH theorem, since sequential
application of the control Hamiltonians generates new directions in the
Lie algebra

Note this implies that there exists a T and controls ui (t) such that
U(T ) = U for any U ∈ U(N); however, T can be very large and
unknown.
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Lie algebra rank condition: numerical methods

To numerically check the Lie algebra rank condition:
1 Construct elements in the dynamical Lie algebra by taking

commutators [H0,Xi ], [µ,Xi ] for each Xi , with the initial set
{Xi} = {H0, µ}

2 For each element (matrix) Xi in the current set, construct a column
vector whose elements are the linearly independent elements of the
matrix

3 Concatenate these column vectors to obtain an N2 ×M matrix A
4 Do an SVD on A and obtain the rank of the range of A; if this is

unchanged from the last iteration, this is the rank of the dynamical
Lie algebra
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Density matrix controllability

Unitarily equivalent states

Two density matrices (states) ρ1, ρ2 are said to be unitarily equivalent if
we can write ρ2 = Uρ1U

† for some unitary matrix U . Of course, this is
the same as saying that ρ1, ρ2 share the same eigenvalue spectrum.

A quantum control system is said to be density matrix controllable if any
density matrix ρ2 is reachable from the all unitarily equivalent density
matrices ρ1.
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Conditions for density matrix controllability

Controllability of two unitarily equivalent states (states with a given
eigenvalue spectrum) requires that the orbit {Uρ1U†|U ∈ exp(L)} is
equal to the largest possible such set, {Uρ1U†|U ∈ exp(⊓(N ))}.
To test for density matrix controllability, we need a simple
(numerically testable) condition for this

Since all possible evolutions of ρ0 under the action of arise from the
commutators (recall the von Neumann equation), a quantum system
is pure state controllable if

dim[iρ0,L] = dim[iρ0, u(N)]

The rhs of this equation it the dimension of the state manifold
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Reachable sets and controllability of dynamical systems: Intro
Controllability: definitions

Observability
Controllability of bilinear systems

State controllability
Controllability of bilinear systems on compact Lie groups

Pure state controllability

Recall that dim SHN
= 2N − 1

A quantum system is pure state controllable if

dim[iρ0,L] = 2N − 1

Note for molecular control problems, the required condition is even
weaker because only observable expectation values must be
controlled

Because pure state controllability is generally satisfied and due to
the dependence of observable control on the nature of the
observable, we will not consider the latter here
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Reachable sets and controllability of dynamical systems: Intro
Controllability: definitions

Observability
Controllability of bilinear systems

State controllability
Controllability of bilinear systems on compact Lie groups

Because U(N) is compact, quantum system controllability has
additional favorable features beyond that of general bilinear systems

Specifically: for a controllable system any propagator can be written
U(T ) = exp(− i

~
Hintn) · · · exp(− i

~
Hi1t1) with finite n, for some set

of Hij in the dynamical Lie algebra

This means that sequential independent application of control
Hamiltonians can achieve any propagator or state (previously we
considered arbitrary superpositions of Hamiltonians)

There are important implications for quantum computing
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Optimization strategies for Bolza and Mayer costs

For numerical solutions based on the gradient of the objective
function J with respect to the control, need to integrate state,
costate or both sets of differential equations with an implicit
expression for the field ε̄(ψ(t), φ(t)) at each step.

In the absence of additional symmetries, need to integrate both
state and costate equations simultaneously.

With the additional symmetries of Hermiticity of the matrices A,B
and bilinearity of the control system, we can reduce the numerical
problem to just integration of the state equations in terms of φ(T ).

Recall the form of the gradient of the PMP-Hamiltonian with
respect to the control:

∂H

∂ε(t)
= − i

~
Tr

(

U
†
k (T )∇Uk (T )F (Uk (T ))Uk (

†t)µUk(t)
)

for Mayer functionals and

∂H

∂ε(t)
= −ε(t)− i

~
Tr

(

U
†
k (T )∇Uk (T )F (Uk (T ))Uk(

†t)µUk (t)
)

for Bolza functionals with quadratic fluence cost.



Computational considerations concerning the calculation of
the gradient

The above analytical expression for the gradient is equivalent to
∂J(ε(·))
δε(·) at each time t

For numerical optimization, discretize the control:
ε(t) = (ε(t1), · · · , ε(tn))
For gradient-based optimization of quantum systems, integrate just
the Schrödinger equation using, e.g., Runge-Kutta algorithms and
compute the gradient as above at each step; note there is no
additional computational cost in applying gradient algorithms
compared to algorithms that only use the value of J(ε(t)).

Application of gradient-based optimization to general control
systems requires the integration of the costate equations as well, to
obtain the gradient; optimization algorithms based only on the value
of J(ε(·)) are less expensive per iteration (generally true)

Algorithms based on the objective function value alone are typically
stochastic algorithms - i.e., starting two optimizations from the same
initial guess will not reach the same point on the parameter space in
n steps - whereas those based on the gradient (and/or Hessian
matrix of second derivatives) are typically deterministic.
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Gradient flow (steepest ascent) algorithms

The simplest first-order algorithm is the gradient flow of the objective
function; the gradient flow trajectory is the solution us(t) to the initial
value problem

∂us(t)

∂s
= α(s)

δJ(u(t))

δu(t)

for a specified initial guess for the control u0, where α(s) is an adaptive
step size.

The discretized form of the gradient will be written ∇xJ(xs).

α(s) is typically determined by line maximization algorithms, which
search for the lowest function value along a given direction (here the
gradient), e.g. by trying a large α to start with, then backtracking
until the minimum along the direction is found.

We will discuss line maximization methods in both one- and
multidimensions in a later lecture
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More advanced deterministic algorithms: improvements on
steepest ascent

Note that the gradients ∇xJ(xs+1), ∇xJ(xs) in the steepest ascent
method on successive line maximizations are orthogonal, i.e.
∇xJ(xs+1) · ∇xJ(xs) = 0, which means that successive steps do not
“interfere” with each other’s maximizations.
However, note that ∇xJ(xs+2) · ∇xJ(xs) 6= 0, so that may
counteract the work done in the s-th minimization during the
s + 2-th maximization
The notion of conjugate directions rectifies the above circumstance,
based on a second-order approximation to the objective function
near the maximum.

The most basic improvements on steepest ascent - the conjugate

gradient (CG) and the quasi-Newton (QN) methods - are derived
based on second-order approximations of J. We will cover both in
turn. These use only first-order information to find the optimum of a
function under the quadratic approximation.

CHE 597 - Quantum Control Engineering - Spring 2010 Deterministic algorithms for optimization and control



Conjugate gradient optimization

Consider the 2nd-order Taylor expansion of an arbitrary multivariable
function around a point x̄ :

f (x) ≈ c +∇f (x̄)(x − x̄) +
1

2
(x − x̄)TH(x̄)(x − x̄).

Let the (symmetric) Hessian matrix H be full rank so there is a
unique solution (let us use the notation xi ≡ xi for convenience.

A well-behaved function can always be approximated in this way
near the optimum x̄ , but let us now assume that this approximation
is valid for any xi , and make the replacement x̄ → xi .

At step 0, set the step direction h0 = g0, where g0 denotes ∇f (x0).
At step i, move in direction hi until the function stops decreasing.
Let gi = ∇f (xi ). Condition for maximum along a line: hi · gi+1 = 0

To improve upon SD, we ensure that all previous step directions are
perpendicular to the change of the gradient (“conjugacy condition”)
that occurs during the current step. According to the first-order
Taylor expansion for the gradient

g(xi+1)− g(xi) ≈ H(xi )(xi+1 − xi )
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The “conjugacy” condition is then

g(xi+1)− g(xi ) = H(xi )(xi+1 − xi )

hTj [g(xi+1)− g(xi )] = hTj H(xi)(xi+1 − xi )

= hTj H(xi)hi = 0, ∀j < i .

A conjugate set with respect to a symmetric matrix H is a set of
vectors such that all hj , hi in the set satisfy hTj Hhi if j 6= i

The first-order Taylor expansion for the gradient may be written

gi+1 = gi + λiH(xi )hi ,

where now we have scaled the step hi by a factor λi . λi is chosen to
maximize f along hi . We can solve for this step by applying the
condition hTi gi+1 = 0 (line maximum condition).

Henceforth, use the notation H ≡ H(xi ) (assume a quadratic form
with constant Hessian)
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Obtaining the step size

To solve for the step size λi under the quadratic approximation,
multiply both sides of gi+1 = gi + λiHhi by hTi , and apply
hTi gi+1 = 0:

hTi gi+1 = hTi gi + λih
T
i Hhi

λi = − hTi gi

hTi Hhi

Computationally, λi is found using a line maximization algorithm,
which does not require calculation of H(xi ).

Now assume that at each step the new step hi+1 can be written as a
linear combination of old step and new gradient vector:

hi+1 = gi+1 + γihi ;

we next solve for γi .
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Obtaining the step update

We solve for the γi that satisfies the conjugacy condition for hi+1, hi :

hTi+1Hhi = (gi+1 + γihi)
THhi = 0

= gT
i+1Hhi + γih

T
i Hhi

So γi = − gT
i+1Hhi

hT
i
Hhi

. Since Hhi =
gi+1−gi

λi
,

γi =
−gT

i+1(gi+1 − gi )
1
λi

hTi (gi+1 − gi)
1
λi

.

Because gT
i+1gi = 0 and hTi gi+1 = 0, we obtain

γi =
gT
i+1gi+1

hTi gi
.
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Although we have an expression for the λi ’s, they are computed
using line maximization approaches, since CG does not use the
Hessian matrix H (due to the expense of calculating it).

Note that for a quadratic form (e.g., f (x) = c + bTx + 1
2x

THx or
simply f (x) = 1

2x
THx , with Hessian H), the optimal

x̄ = x0 +
∑n

i=1 λihi , i.e., the n hi ’s comprise a (non-orthogonal)
basis for Rn (they are said to be “H-orthogonal”) with basis
expansion coefficient λi . The CG algorithm then converges to the
optimum of the function in exactly n steps, whereas steepest ascent
may take an arbitrarily large number of steps to converge depending
on the initial guess.

The “conjugacy” of the directions in the above derivation holds
rigorously only for a quadratic form, where H is constant. In general,
H will be a function of xi , but we do not compute it in CG.
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Conjugate gradient optimization (cont)

It can be shown (try it) that hi step directions constructed by this
algorithm are all conjugate for a quadratic form, i.e.

hTj Hhi = 0

for all j < i as well as

gi · gj = 0

gi · hj = 0, j < i .

The conjugate gradient method converges to the solution in N steps
for a function f that is a quadratic form; a more sophisticated
convergence analysis is required for other functions, which we may
revisit later.
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Algorithms for control optimization

Newton’s method

Quasi-Newton methods

Newton’s method in multidimensions uses the inverse Jacobian
matrix to find the roots of a system of nonlinear equations.

When these equations correspond to the components of the gradient
vector, the method can be used to find minima/maxima

Quasi-Newton methods are applied only to function optimization.
They are based on the similar principles to conjugate gradient, but
rather than searching for conjugate directions based on gradient
information, they directly use the approximations to (inverse)
Hessian to compute successive step directions.

The approximations to the inverse Hessian in Quasi-Newton
methods only require computation of the gradient!

We start with Newton’s method (also called the Newton-Raphson
method) in multidimensions
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Quasi-Newton methods (cont)

Consider finding the solution the system of equations F (x) = 0
Denoting the components of the Jacobian matrix of F by Jij =

∂Fi

∂xj
,

we have F (xi+1)− F (xi ) ≈ J (xi )(xi+1 − xi )
Setting F (xi+1) = 0, we get xi+1 − xi ≈ −J−1(xi )F (xi ) as the
Newton step
To apply this to minimization of a function f (x), we set
F (x) = ∇f (x). Then,

∇f (xi+1)−∇f (xi ) ≈ H(xi)(xi+1 − xi )

xi+1 − xi ≈ −λiH−1(xi )∇f (xi )

where in the second line we have set ∇f (xi+1) = 0 as the condition
for reaching the maximum in one step, unlike conjugate gradient
where we aim to reach the maximum along a line in each step. The
step length λ = 1 for a quadratic form.

We will return to the general Newton-Raphson (NR) method when
we discuss numerical methods for constrained optimization.
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Quasi-Newton methods (cont)

The Newton step is “successful” if ∆f = f (xi+1)− f (xi ) > 0. Consider
the second-order Taylor expansion for ∆f :

∆f = ∇f (xi )(xi+1 − xi ) +
1

2
(xi+1 − xi )

TH(xi)(xi+1 − xi ) > 0

Inserting the Newton step, we get

∆f = −(xi+1 − xi )
TH(xi)(xi+1 − xi ) +

1

2
(xi+1 − xi )

TH(xi )(xi+1 − xi)

= −1

2
(xi+1 − xi )

TH(xi )(xi+1 − xi) > 0

which is satisfied if H is negative-definite and the step scale λ > 1/2.
Because this is not always true, Quasi-Newton methods replace the
inverse Hessian with an approximate inverse Hessian Q such that
limi→∞ Q(xi ) = H−1(xi ).
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Hessian updating schemes

x − xi = −H−1∇f (xi )

This would take one to max if f is quadratic form; instead use line
search to see where to stop

Don’t know H ,H−1; Start w e.g. Q0 = ±I as H−1 guess (initial
guess depends on whether we are maximizing or minimizing f )

Subtract equations at iterations i and i + 1 and let ∇fi ≡ ∇f (xi ):

xi+1 − xi = Qi+1(∇fi+1 −∇fi )

Note we have chosen to require the new approximate inverse Hessian
Qi+1 satisfies this condition just like the real inverse Hessian would if
f were a quadratic form
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Hessian updating schemes (cont)

Qi+1 = Qi+ correction term

Find possible correction terms consistent with above expression

Since the approximate inverse Hessian must be symmetric, the
inverse Hessian update must take the form Qi+1 = Qi + Qu

i , where
the correction term Qu

i is also a symmetric matrix

A general symmetric matrix of order n can be written in the form
∑n

i=1 aiviv
T
i =

∑n

i=1 aivi ⊗ vi , i.e. as an expansion over the outer
products of its eigenvectors vi (with the expansion coefficients being
the corresponding eigenvalues).

The most common updating schemes are rank-two updates, i.e.,
Qu

i = a1v1 ⊗ v1 + a2v2 ⊗ v2

Rank two updates provide more flexibility in satisfying the QN
condition on the inverse Hessian while generating efficient update
scheme

The standard rank-two update schemes are called DFP
(Davidon-Fletcher-Powell), and BFGS
(Broyden-Fletcher-Goldfarb-Shanno) updates; they are closely
related, with the BFGS generally performing better.



DFP (Davidon-Fletcher-Powell) updating

The DFP updating scheme for the inverse Hessian approximation
uses v1 = xi+1 − xi ≡ hi , and v2 = Qi(∇fi+1 −∇fi ) := Qi (gi+1− gi):

Qi+1 = Qi +
hi ⊗ hi

hTi (gi+1 − gi)

− [Qi (gi+1 − gi)]⊗ (Qi (gi+1 − gi)]

(gi+1 − gi)TQi (gi+1 − gi)

Verify that this satisfies the QN required condition on the inverse
Hessian by plugging into above expression hi = Qi+1(gi+1 − gi); this
comes from 2nd term while third term cancels out contribution from
Qi

We have
[hi ⊗ hi ](gi+1 − gi) = hi [h

T
i (gi+1 − gi)]

and

[Qi (gi+1 − gi)]
T (gi+1 − gi) = (gi+1 − gi)

TQi (gi+1 − gi)

An advantage of QN methods over CG is that their formulation does
not refer to precise maximization along each step direction (note we
did not require gT

i+1gi = 0); we will return to this when we discuss
line search methods below



BFGS (Browden-Fletcher-Goldfarb-Shanno) updating

The BFGS update is analogous to the DFP update, but written for
the Hessian instead of the inverse Hessian

It follows from recognizing that if one has an update formula for
Qi = H−1

i , one can obtain an update for Hi by replacing Qi by Hi

and interchanging the roles of xi+1 − xi ≡ hi and
∇fi+1 −∇fi := gi+1 − gi

The BFGS update for Hi is then

Hi+1 = Hi +
(gi+1 − gi)⊗ (gi+1 − gi )

(gi+1 − gi)T hi
− (Hihi)⊗ (Hihi)

hTi Hihi

The resulting formula for Hi+1 can then be inverted to obtain the
update for the inverse Hessian Qi+1

The reason the BFGS update can be applied with low computational
expense, despite the fact that the update is defined in terms of the
Hessian rather than inverse Hessian, is that there exists a analytic
formula called the Sherman-Morrison formula for the inverse of a
“matrix plus an update” when the update takes the form of an outer
product of vectors.



Sherman-Morrison matrix inversion lemma

Through a matrix Taylor expansion, we can simplify (A+ u ⊗ v)−1:

(A+ u ⊗ v)−1 = ((I + A−1u ⊗ v)−1)A−1

= (I − A−1u ⊗ v + A−1u ⊗ v · A−1u ⊗ v)A−1

= A−1 − A−1u ⊗ A−1v(1− λ+ λ2 − · · · )

= A−1 − A−1u ⊗ A−1v

(1 − λ)

where we have used the associativity of matrix and tensor products
and λ = vTA−1u.

The Sherman-Morrison formula is

(A+ u ⊗ v)−1 = A−1 − (A−1u)⊗ (A−1v)

1− vTA−1u

You may apply it to the Hessian update above (possibly in a
homework) to obtain the explicit expression for Qi+1 given Qi (adds
an additional correction term to DFP)

S-M formula is very often used in numerical analysis to update
inverse of a matrix given a perturbation with minimal computational
expense
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Line search (adaptive step size) without bracketing

Line search without bracketing is designed to increase the function
“sufficiently” but not necessarily precisely to the line maximum

These are commonly used in NR and QN methods, but not as much
in CG (for which bracketing is used); the reason is that NR/QN do
not require precise maximization along a line, as discussed

Let xnew = xold + λp, 0 < λ ≤ 1 where p is the (Quasi-)Newton
direction; for QN algorithm at step i , xold is xi , xnew is the current
attempt at xi+1

Start with λ = 1; set acceptance criteria that must be satisfied, or
otherwise reject and backtrack.

Criteria not just f (xnew ) ≥ f (xold ). Require average rate of decrease
of f to be at least fraction α < 1 of initial rate of increase (∇f · p):
i.e. check if f (xnew )− f (xold ) ≥ α(∇f · p)
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Polynomial line search (backtracking)

Algorithm:
1 Let y(λ) = f (xold + λp); λ parametrizes a straight line through the

parameter space in the direction p; then dy

dλ
= ∇f · p, i.e., directional

derivative of f along p Solve for second order coeff based on
matching value at y(1); then solve for zero of derivative. Use this
maximum as next guess

2 Do not compute the gradient at any point other than xold ; i.e., only
y ′(0)

3 In next iteration use a cubic model (higher order Taylor
approximation of y(λ)) based on same principle

Step 1: y(λ) = (y(1)− y(0)− y ′(0))λ2 + y ′(0)λ+ y(0); y(1) is
known

Check: y(1) = y ′(0) + y(0) + y(1)− y ′(0)− y(0)

Solve for λ2 = λmax (i.e., λ such that dy
dλ

= 0)

2λ(y(1)− y(0)− y ′(0)) + y ′(0) = 0

λ2 =
y ′(0)

2(y(1)− y(0)− y ′(0))

The latter is the new λ guess; we have λ2 < 1 since the curvature is
negative
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Polynomial line maximization (cont)

Compute y(λ2) using λ2 from quadratic model
Now model y(λ) as a cubic, using the four known values
y(0), y(1), y ′(0), y(λ2):

y(λ2) = aλ32 + bλ22 + y ′(0)λ2 + y(0)

y(1) = a + b + y ′(0) + y(0)

Solve the above system of equations for a, b
Find (local) maximum of the cubic:

dy

dλ
= 3aλ22 + 2bλ2 + y ′(0) = 0

λ2 =
−2b ±

√

(2b)2 − 4(3a)y ′(0)

6a

Compare graphs for quadratic and cubic polynomials)
Set λmin = λ3; note that λ3 < λ2
Do same for λ4, · · · , λn, since higher order polynomials will have
multiple local maxima
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Golden section search

Bracketing is a method for obtaining the minimum of an objective
function J along a given direction (vector); it is typically used with
conjugate gradient methods along the successive noninterfering
directions

A bracket of a minimum of an objective function J is a triplet of
points a < b < c where f (a) > f (b) and f (c) > f (b); we then have
a < xmin < c ; b is current guess for minimum

Golden section search: updates bracketing until bracket is narrowed
within a given tolerance

Based on initial bracket, choose new pt x between a, b or b, c

Given latter choice, if f (b) < f (x), new bracket is a, b, x ; otherwise
b, x , c

Given former choice, if f (b) < f (x), new bracket is a, x , b; otherwise
x , b, c
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Golden section search (cont)

Algorithms exist for choosing x given a, b, c : golden section search
involves using larger of two intervals

Let b−a
c−a

= w , then c−b
c−a

= 1− w . Assume w < 0.5

Call the first possible choice for the new bracket “Bracket I” (a, b, x)
and the second “Bracket II” (b, x , c); assume (will validate shortly)
that b < x < c .

Impose condition that length of bracket I, |x − a|, equals length of
bracket II, |c − b|.
Then must have |b − a| = |x − c |
Let x−b

c−a
= z

Since Bracket I is of length (w + z)|c − a| and Bracket II is of length
(1 − w)|c − a|, this implies w + z = 1− w or z = 1− 2w
(condition 1 on w)
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2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

Golden section search (cont)

Secondly, require scale similarity between iterations - i.e., (b, x , c) is
a smaller scaled version of (a, b, c): z

1−w
= w (condition 2 on w)

to be equal

Solving for w given conditions 1 and 2 gives w 2 − 3w + 1 = 0; or
w = 0.38197 (called golden mean)

Continue until reaching tolerance in size of bracket (difference bet
outer bounds)

Convergence linear in sense of rate at which bracket size decreases
(see above ratio)
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2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Outline

1 Introduction to numerical optimization algorithms
Gradient-based vs cost function-based optimization algorithms
Conjugate gradient

2 2nd order algorithms
Newton’s method

3 Line search algorithms using backtracking

4 Bracketing of minima (maxima) along a line

5 Algorithms for control optimization
The shooting method
Iterative control optimization algorithms based on PMP
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Two-point boundary value problems

Optimal control problems for Mayer functionals are often best solved
using QN or CG methods

For Mayer functionals, there is no way to express ū(t) as implicit
function of x(t), φ(t)

For Lagrange or Bolza functionals, we write ū(t) = g(x(t), φ(t)) and
then integrate x , φ odes in terms of known x(0) and unknown φ(0)

Mathematically this is known as a system of differential equations
with split boundary conditions or a two-point boundary value

problem

Even if we have analytic solutions for x(t) and φ(t), if the
state/costate odes are coupled, we cannot solve for the unknown
integration constants in a single step
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Two-point boundary value problem: example

Numerically, we cannot just propagate the system of equations
forward from a single x(0), φ(0) to obtain the solution

This circumstance arises when, upon substitution of the implicit
expression for the control in terms of x(t), φ(t), we obtain a coupled
system of odes called a PMP-Hamiltonian dynamical system.

Consider the following generic example of a scalar linear control
system, whose PMP-Hamiltonian system is also linear:

[

dx
dt
dφ
dt

]

=

[

a b

c d

] [

x(t)
φ(t)

]

:= A

[

x(t)
φ(t)

]

with x(0) given, and φ(T ) = ∇xF (x(T )).

This problem can be solved analytically but we will use it to
illustrate the general numerical shooting approach.
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Numerical methods for two-point boundary value problems:
shooting method

The shooting method (iteratively) converges upon the target φ(T )
vector by making successive changes in the initial conditions φ(0);
i.e., it shoots from x(0), φ(0), trying to hit the terminal boundary
conditions φ(T )

Numerical algorithms for shooting are typically based on a
combination of (i) the Newton-Raphson method; and (ii) the
Runge-Kutta ODE integration method.

RK is used to integrate the state/costate ODEs at each step, given
x(0) and guess for φ(0) vectors

NR is used to solve for the roots of the boundary condition
equations, i.e., φ(T )− φf = 0 Call these fi and let φi (0) = ci ; then
NR step is, δc = λJ−1F (c), where the elements of the Jacobian are
Jij ≡ ∂fi

∂cj
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Shooting method (cont)

Each iteration of NR (function evaluation) requires the integration
of the 2n state, costate ODEs by RK

QN is typically not used since would require taking additional
derivatives in order to obtain gradient conditions rather than root
conditions; do not have analytic derivatives. QN updates cannot be
applied to Jacobian.

For Lagrange-type costs, the n unknown terminal boundary
conditions are on x(T ), not φ(T ), but procedure otherwise same

Stepsizes λi typically determined by polynomial line search

Shooting can be applied to either Lagrange or Bolza functionals
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Analytical methods for two-point boundary value problems

For linear control systems, the elements of the Jacobian ∂fi
∂φj (0)

(columns of the Jacobian matrix ∂f
∂φj (0)

) can be identified analytically

This provides further insight into the shooting method

The method of unit solutions is used for this purpose

Method of unit solutions for solving linear two-point boundary value
problems relies on the principle of superposition: the notion that any
solution to homogeneous system of linear differential equations can
be represented as a linear combination of a complete set of basis
functions (linearly independent solutions).
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Method of unit solutions

Integrate PMP-Hamiltonian system using initial conditions
x(0) = xinit and φ(0) = 0; call resulting solution x0(t), φ0(t). In
order to obtain n unknown initial conditions φ(0):

Integrate with n initial conditions
φi (0) = 1, φj(0) = 0, j 6= i ; xi (0) = 0, i = 1, · · · , n. Call the
resulting solns x i(t), φi (t).

Write the general solution as linear combination

x(t) = x0(t) +
∑

i

cix
i (t)

φ(t) = φ0(t) +
∑

i

ciφ
i (t)

note x0(t) will contain known initial conditions xinit
By setting φ(T ) = ∇xF (x(T )), solve for the unknown coefficients
ci = φi (0)

For linear control systems, the φi (t) are the columns ∂f
∂φi (0)

and the

Jacobian is constant; hence NR should converge in approximately 1
step

Complete the solution by plugging the ci into expressions for
x(t), λ(t), u(t)



Method of unit solutions: scalar example

Assume we have integrated the general scalar linear
PMP-Hamiltonian system introduced above, without application of
the initial conditions on x(t) or (unknown) terminal conditions on
φ(T ).

Method of unit solutions: (i) Write the solution with
x(0) = xinit , φ(0) = 0, call it [x0(t), φ0(t)]T ; then write solution
with x(0) = 0, φ(0) = 1, call it [x1(t), φ1(t)]T . Then we can
express the true solution as

[

x(t)
φ(t)

]

=

[

x0(t)
φ0(t)

]

+ c

[

x1(t)
φ1(t)

]

.

Here, f = φ0(T ) + cφ1(T )−∇xF (x(c ,T )), which is linear fn of c .
The Jacobian is simply ∂f

∂c
= φ1(T ).

Numerically, guess a value for c , solve for x(c ,T ) from the 1st row
of the vector equation above, solve for copt according to
copt = c − J−1f (c).

So, the linearity of the control system has enabled application of the
principle of superposition, which in turn leads to the linearity of the
optimization problem.



Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Self-consistent iterative algorithms: formulation

A common optimization strategy for Bolza functionals is the use of
so-called iterative algorithms that are based on the PMP.
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Self-consistent iterative algorithms: formulation

A common optimization strategy for Bolza functionals is the use of
so-called iterative algorithms that are based on the PMP.
An initial guess for u(t) (denoted ũ0(t)), is used to integrate the
dynamical equation forward starting from initial condition x0, and
the costate equation backward from final condition ∇x(T )F (x(T ));
these steps are iterated self-consistently.
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Introduction to numerical optimization algorithms
2nd order algorithms

Line search algorithms using backtracking
Bracketing of minima (maxima) along a line

Algorithms for control optimization

The shooting method
Iterative control optimization algorithms based on PMP

Self-consistent iterative algorithms: formulation

A common optimization strategy for Bolza functionals is the use of
so-called iterative algorithms that are based on the PMP.
An initial guess for u(t) (denoted ũ0(t)), is used to integrate the
dynamical equation forward starting from initial condition x0, and
the costate equation backward from final condition ∇x(T )F (x(T ));
these steps are iterated self-consistently.
For a quadratic cost on the control (for other costs the implicit
expression for u(t) will change)

dxk(t)

dt
= f (x(t), ũk (t)), x(0) = x0

dφk+1(t)

dt
= ∇x(t)H(xk (t), φk+1(t), uk+1(t)), φk+1(T ) = ∇x(T )F (xk (T ))

uk+1(t) =
∂

∂u(t)
〈φk+1(t), f (xk (t), uk+1(t))〉

ũk+1(t) =
∂

∂u(t)
〈φk+1(t), f (xk+1(t), uk+1(t))〉
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2 Control systems

3 Optimal control cost functionals
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5 The Pontryagin Maximum Principle
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Control systems

Optimal control cost functionals
Euler-Lagrange equations

The Pontryagin Maximum Principle
Sufficient conditions for optimality

Methods covered
Applications and extensions

Course policy

Research- and methods-oriented

Homework assignments include code development for use in domain
research

40% homework, coding; 20% midterm project; 20% final project;
20% final report

Codes developed will be available on blackboard for registered
students

500 lecture slides on optimization/control techniques available on
blackboard for registered students

Pass/fail option permitted

CHE 597 Optimal control theory



Course survey
Control systems

Optimal control cost functionals
Euler-Lagrange equations

The Pontryagin Maximum Principle
Sufficient conditions for optimality

Methods covered
Applications and extensions

Control, estimation and optimization topics

Optimal control theory - learn to redirect dynamics to desired ends

Analytic solutions to OCT problems

Algorithms for numerical optimization: stochastic and deterministic

Controllability

Observability

Estimation methods - likelihood-based, Bayesian; estimation
algorithms: assess statistical error and incorporate

Optimal feedback control: Hamilton-Jacobi-Bellman equations and
dynamic programming

Time permitting: model uncertainty
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Control systems

Optimal control cost functionals
Euler-Lagrange equations

The Pontryagin Maximum Principle
Sufficient conditions for optimality

Methods covered
Applications and extensions

Numerical methods covered in HW exercises

Learn how to computationally optimize chemical, mechanical, electrical
or molecular objective functions

Genetic and evolutionary optimization

Multiobjective optimization

Constrained optimization (Newton-Raphson)

Runge-Kutta ODE integration

Markov Chain Monte Carlo numerical integration (MCMC)

Self-consistent iterative algorithms

Controllability and observability assessment

Some of the codes you write may be run in high performance parallel
format to accelerate your research
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Control systems

Optimal control cost functionals
Euler-Lagrange equations

The Pontryagin Maximum Principle
Sufficient conditions for optimality

Methods covered
Applications and extensions

Extending control engineering to the micro, submicro and

nanodomains

In addition to generic engineering applications of optimization and
control methods,

Introductory molecular quantum mechanics and quantum chemistry
Atomic and molecular optimal control
Laser control of reactive chemistry
Optimal design of quantum computers (quantum dots, nuclear spins,
etc)
Optimal design and control for coherent quantum transport: exciton
control for photovoltaics (nanosolar cells)
Optimal control of semiconductor optical switching
See distributed handouts for details
This semester’s course will be basis for molecular optimal control
book by Chakrabarti and Rabitz, Taylor and Francis, 2011: be a part
of the development
New course: register for blackboard access to all course materials
and application areas CHE 597 Optimal control theory
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4 Euler-Lagrange equations
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Types of control systems

We will be concerned only with first-order systems, i.e., where the
dynamics of the state evolution are specified by a system of first-order
ordinary differential equations (ODEs). In optimal control, these are
called the dynamical equations of the variational system.

Linear control system

A linear control system is one that is linear in the control and the state;
it has the general form

dx

dt
= Ax(t) + Bu(t)

where A is a n× n matrix, B is an n ×m matrix, x is the n-component
state vector and u is a m component vector of controls. A,B and x may
be either real or complex; u must be real.
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Bilinear control systems

Bilinear control system

A bilinear control system is one that is linear in both the control and the
state, and where the control and state enter multiplicatively; it has the
general form

dx

dt
=

[

A+
∑

i

Biui(t)

]

x(t)

where each Bi is a n × n matrix and u = (u1, · · · , um) is the m

component vector of controls.

For linear and bilinear control systems, the term Ax(t) is referred to as
the drift of the control system, since it specifies how the system evolves
when the control is turned off. (For bilinear systems in physics, A is
sometimes referred to as the drift Hamiltonian, and Bi as the control
Hamiltonians).
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Nonlinear control systems

Nonlinear control system

A nonlinear control system is nonlinear in either the control, the state, or
both; it cannot be expressed in either form above and has the general
form

dx

dt
= f (x(t), u(t)).
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Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.

CHE 597 Optimal control theory



Course survey
Control systems

Optimal control cost functionals
Euler-Lagrange equations

The Pontryagin Maximum Principle
Sufficient conditions for optimality

Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.

The most “general” are functionals of the Bolza type:

J[x(·), u(·)] = F (x(T )) +

∫ T

0

L(x(t), u(t)) dt,
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Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.

The most “general” are functionals of the Bolza type:

J[x(·), u(·)] = F (x(T )) +

∫ T

0

L(x(t), u(t)) dt,

If only the term
∫ T

0
L(x(t), u(t)) dt is present, the cost functional is

said to be of the Lagrange type.
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Optimal control cost functionals
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Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.

The most “general” are functionals of the Bolza type:

J[x(·), u(·)] = F (x(T )) +

∫ T

0

L(x(t), u(t)) dt,

If only the term
∫ T

0
L(x(t), u(t)) dt is present, the cost functional is

said to be of the Lagrange type.

If only the term F (x(T )) is present, the functional is said to be of
the Mayer type.
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The Lagrangian functional

The optimal control problem may be stated as

max
u(·)

J[x(·), u(·)] (1)

subject to the constraint of the dynamical differential equation.

Define a Lagrangian functional J̄ that directly imposes the constraint in
the dynamical equation:

J̄[ x(·), φ(·), x(·)] = F (x(T ))+
∫ T

0

[

λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t) − dx(t)

dt
〉
]

dt (2)
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First-order variation

Define the PMP-Hamiltonian function

H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t)〉
.



First-order variation

Define the PMP-Hamiltonian function

H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t)〉
.

Expressing the Lagrangian in terms of H and integrating

〈φ(t), dx(t)
dt

〉 by parts, we get

J̄ = F (x(T ))− 〈φ(T ), x(T )〉 + 〈φ(0), x(0)〉

+

∫ T

0

H(x(t), φ(t), u(t)) + 〈dφ(t)
dt

, x(t)〉 dt.



First-order variation

Define the PMP-Hamiltonian function

H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t)〉
.

Expressing the Lagrangian in terms of H and integrating

〈φ(t), dx(t)
dt

〉 by parts, we get

J̄ = F (x(T ))− 〈φ(T ), x(T )〉 + 〈φ(0), x(0)〉

+

∫ T

0

H(x(t), φ(t), u(t)) + 〈dφ(t)
dt

, x(t)〉 dt.

The first-order variation of this Lagrangian is

δJ̄ = 〈∇x(T )F (x(T )) − φ(T ), δx(T )〉+ 〈φ(0), δx(0)〉+

+

∫ T

0

〈∇x(t)H+
dφ(t)

dt
, δx(t)〉+∇u(t)H · δu(t) dt.



First-order variation

Define the PMP-Hamiltonian function

H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t)〉
.

Expressing the Lagrangian in terms of H and integrating

〈φ(t), dx(t)
dt

〉 by parts, we get

J̄ = F (x(T ))− 〈φ(T ), x(T )〉 + 〈φ(0), x(0)〉

+

∫ T

0

H(x(t), φ(t), u(t)) + 〈dφ(t)
dt

, x(t)〉 dt.

The first-order variation of this Lagrangian is

δJ̄ = 〈∇x(T )F (x(T )) − φ(T ), δx(T )〉+ 〈φ(0), δx(0)〉+

+

∫ T

0

〈∇x(t)H+
dφ(t)

dt
, δx(t)〉+∇u(t)H · δu(t) dt.

The corresponding first-order conditions (Euler-Lagrange equations)
follow from the requirement that δJ̄ = 0 for any δu, and hence for
any δx(t).
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Euler-Lagrange equations 1,2

The first two E-L equations are

1 ∇x(t)H+ dφ(t)
dt

= 0,

2 ∇u(t)H = 0, 0 ≤ t ≤ T .
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Dynamical equation of the adjoint system

The first Euler-Lagrange equation can be expanded as

dφ(t)

dt
= −∇x(t)H

= −λ∇x(t)L(x(t), u(t)) −∇x(t)〈φ(t), f (x(t), u(t)))〉,

which is referred to as the dynamical equation for the adjoint system.
We will write explicit forms of the E-L equations for linear and bilinear
systems, in turn.
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Dynamical equation of the adjoint system: linear control

For linear control systems, we can make the identification

∇x(t)(H− λL) = A†φ(t).

So, we have
dφ(t)

dt
= −λ

(

∇x(t)L
)

− A†φ(t)

CHE 597 Optimal control theory



Course survey
Control systems

Optimal control cost functionals
Euler-Lagrange equations

The Pontryagin Maximum Principle
Sufficient conditions for optimality

Dynamical equation of the adjoint system: bilinear control

For bilinear control systems, we can make the identification

∇x(t)(H− λL) =
(

A† + B†u(t)
)

φ(t)

So we have

dφ(t)

dt
= −λ∇x(t)L−

(

A† + B†u(t)
)

φ(t).
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Dynamical equation of the adjoint system: bilinear control

For bilinear control systems, we can make the identification

∇x(t)(H− λL) =
(

A† + B†u(t)
)

φ(t)

So we have

dφ(t)

dt
= −λ∇x(t)L−

(

A† + B†u(t)
)

φ(t).

If L = L(u(t)) (i.e., L is not a function of x(t), which is almost
always the case since −L typically represents a resource cost) we
have

dφ(t)

dt
= −

(

A† + B†u(t)
)

φ(t).
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Boundary conditions for the 2nd E-L equation

If the cost function is of Mayer or Bolza type (latter required for
linear systems), the 2nd E-L eqn is associated with boundary
condition

φ(T ) = ∇x(T )F (x(T )),

Note that the boundary conditions for the optimal control problem
with endpoint cost, specified in the variational and adjoint
equations, are “split” between the initial and final times; the costate
φ(t) is propagated backwards in time starting from φ(T ), whereas
the “state” x(t) is propagated forward in time starting from x(0).



The third Euler-Lagrange equation: linear systems

For linear systems,

∂H

∂u(t)
= 0, 0 ≤ t ≤ T

= λ∇u(t)L(u(t)) + 〈φ(t),~b〉 = 0

where ~b is an n-component vector that is the first column of B.



The third Euler-Lagrange equation: bilinear systems

Whereas for bilinear systems,

∂H

∂u(t)
= 0, 0 ≤ t ≤ T

= λ∇u(t)L(u(t)) + 〈φ(t),Bx(t)〉.
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Pontryagin Maximum Principle (PMP)

The Euler-Lagrange equations can be succinctly stated in terms of the
Pontryagin Maximum Principle.

For the class of problems considered above with fixed terminal time T ,
the Pontryagin Maximum Principle is:

Theorem

(Pontryagin) An optimal control ū(·) that solves the control problem

max J̄ satisfies ∂H
∂u(t) = 0 for a matrix φ(T ) = ∇x(T )F (x(T )) for Bolza or

Mayer functionals (otherwise unspecified for Lagrange functionals) and

scalar λ where at least one of φ(T ), λ is nonzero.
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PMP conditions for functionals: bilinear control

For a bilinear control systems, the PMP thus demands that

∂H

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),Bx(t)〉 = 0, 0 ≤ t ≤ T ,

for cost functionals of the Lagrange type.
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∂H

∂u(t)
= λ

∂L(u(t))
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For cost functionals of the Bolza type, we have

∂HB

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),Bx(t)〉 = 0

for bilinear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.



PMP conditions for functionals: bilinear control

For a bilinear control systems, the PMP thus demands that

∂H

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),Bx(t)〉 = 0, 0 ≤ t ≤ T ,

for cost functionals of the Lagrange type.

For cost functionals of the Bolza type, we have

∂HB

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),Bx(t)〉 = 0

for bilinear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.

For cost functionals of the Mayer type, we have

∂HB

∂u(t)
= 〈φ(t),Bx(t)〉 = 0

for bilinear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.
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PMP conditions for functionals: linear control

For linear control systems, the PMP demands that

∂H

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),~b〉 = 0, 0 ≤ t ≤ T ,

for cost functionals of the Lagrange type.

For cost functionals of the Bolza type, we have

∂HB

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),~b〉 = 0

for linear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.
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PMP conditions for functionals: linear control

For linear control systems, the PMP demands that

∂H

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),~b〉 = 0, 0 ≤ t ≤ T ,

for cost functionals of the Lagrange type.

For cost functionals of the Bolza type, we have

∂HB

∂u(t)
= λ

∂L(u(t))

∂u(t)
+ 〈φ(t),~b〉 = 0

for linear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.
For cost functionals of the Mayer type, we have

∂HB

∂u(t)
= 〈φ(t),~b〉 = 0

for linear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.
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Legendre conditions for optimality

Satisfaction of the first-order conditions following from the PMP is a
necessary but not sufficient condition for optimality of a control ε(·).
So-called Legendre conditions on the Hessian ∂2H

∂u(t)∂u(t′) , which depend

on the type of cost, are also required for optimality. These are discussed
further in the next lecture.
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Solution sets to optimal control problems
Analytic solutions: general guidelines

Analytic solutions to quantum control problems
The need for numerical methods

Solutions sets to Lagrange control problems

Denote the space of admissible controls ε(·) by K. Recall that the
condition for optimality of quantum controls for Lagrange costs (on
U(N)) was

∂H

∂ε(t)
= λ

∂L(ε(t))

∂ε(t)
− i

~
Tr

(

U†(T )φ(T )U†(t)µU(t)
)

= 0, 0 ≤ t ≤ T

Imposition of an endpoint constraint on the state (for Lagrange
functionals) places restrictions on the matrix φ(T ) and hence
restricts admissible optimal controls to a subspace SL ⊂ K. A
unique optimal control is then specified.
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Solutions sets to Mayer and Bolza control problems

For Bolza-type functionals, the PMP can explicitly specify a unique
optimal control ε̄(·) ∈ K in the absence of an endpoint constraint,
since it may be possible to solve for ε̄(·) when
φ(T ) = ∇F (x(T )) 6= 0; a unique control is specified there is a
unique state that maximizes F (x).

For Mayer-type cost functionals, the PMP condition defines a
submanifold SM ⊂ K of codimension equal to the number of
constraints present in the condition ∇F (x(T )) = 0 (e.g., N2,
N2 − 1, or 1 for unitary propagator, density matrix or observable
control, respectively).

We will focus on analytical solutions to OCT problems with Bolza costs
or Lagrange costs with a terminal constraint, because a unique optimal
control exists for these problems.
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Types of performance indices (Lagrange cost functions)

The type of Lagrange cost function plays an important role in
determining the solution strategy and characteristics of closed form
optimal control solutions.

A linear cost function can be expressed in the general form
∫ T

0
cT x(t) dt



Types of performance indices (Lagrange cost functions)

The type of Lagrange cost function plays an important role in
determining the solution strategy and characteristics of closed form
optimal control solutions.

A linear cost function can be expressed in the general form
∫ T

0
cT x(t) dt

A quadratic cost function can be expressed in the general form
1
2

∫ T

0 xT (t)Qx(t) dt where Q is a (not necc positive-definite, but
symmetric), i.e., as a quadratic form.
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Solving OCT problems

Solving optimal control problems in closed form is hard because one
must not only integrate systems of coupled differential equations but
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Solving OCT problems

Solving optimal control problems in closed form is hard because one
must not only integrate systems of coupled differential equations but

The differential equations are expressed parametrically in terms of
controls; one must simultaneously solve for the optimal values of
these parameters.
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An example linear system

Solving OCT problems

Solving optimal control problems in closed form is hard because one
must not only integrate systems of coupled differential equations but

The differential equations are expressed parametrically in terms of
controls; one must simultaneously solve for the optimal values of
these parameters.

The solution to a control problem (either the parametric form of the
controls or the explicit function) is called the control law.
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Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems

1 Find the adjoint equations for the control system.
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General steps for solving OCT problems

1 Find the adjoint equations for the control system.

2 Express the control u(t) in terms of the state x(t) and the costate
φ(t)
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Solution sets to optimal control problems
Analytic solutions: general guidelines

Analytic solutions to quantum control problems
The need for numerical methods

Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems

1 Find the adjoint equations for the control system.

2 Express the control u(t) in terms of the state x(t) and the costate
φ(t)

3 If the adjoint equations are uncoupled to the dynamical equations,
a) integrate them. Express undetermined integration constants in
terms of φ(T ). b) Insert this solution for φ(t) into the dynamical
equations and solve.

CHE 597 - Quantum Control Engineering - Spring 2010 Analytic solutions to OCT problems



Solution sets to optimal control problems
Analytic solutions: general guidelines
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Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems (cont)

1 If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of φ(T ) and the known
initial conditions x(0).
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Analytic solutions to quantum control problems
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General steps for solving OCT problems (cont)

1 If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of φ(T ) and the known
initial conditions x(0).

2 If the cost functional is Lagrange, with an endpoint constraint on
the state, use this constraint to obtain φ(T ) and hence explicit
solutions for φ(t), x(t).
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Solution sets to optimal control problems
Analytic solutions: general guidelines

Analytic solutions to quantum control problems
The need for numerical methods

Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems (cont)

1 If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of φ(T ) and the known
initial conditions x(0).

2 If the cost functional is Lagrange, with an endpoint constraint on
the state, use this constraint to obtain φ(T ) and hence explicit
solutions for φ(t), x(t).

3 If the cost functional is Bolza, use φ(T ) = ∇F (x(T )) to obtain a
relation between φ(T ) and x(T ); substitute this implicit expression
for φ(T ) into all equations to obtain explicit expressions for all
constants and determine x(t), φ(t).
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Analytic solutions: general guidelines
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Strategies for solving optimal control problems
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General steps for solving OCT problems (cont)

1 If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of φ(T ) and the known
initial conditions x(0).

2 If the cost functional is Lagrange, with an endpoint constraint on
the state, use this constraint to obtain φ(T ) and hence explicit
solutions for φ(t), x(t).

3 If the cost functional is Bolza, use φ(T ) = ∇F (x(T )) to obtain a
relation between φ(T ) and x(T ); substitute this implicit expression
for φ(T ) into all equations to obtain explicit expressions for all
constants and determine x(t), φ(t).

4 Use the resulting explicit solutions for x(t), φ(t) in the equation for
u(t) to obtain the optimal control ū(t).
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Solving bilinear vs. linear control problems

For bilinear (or nonlinear) control systems, the ode’s resulting from
insertion of u(t) in terms of x(t), φ(t) is nonlinear.
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Solving bilinear vs. linear control problems

For bilinear (or nonlinear) control systems, the ode’s resulting from
insertion of u(t) in terms of x(t), φ(t) is nonlinear.

Thus bilinearity of the control system leads to a nonlinear
Schrödinger equation, and it is generally difficult or not possible to
solve analytically for optimal controls.
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Solving bilinear vs. linear control problems

For bilinear (or nonlinear) control systems, the ode’s resulting from
insertion of u(t) in terms of x(t), φ(t) is nonlinear.

Thus bilinearity of the control system leads to a nonlinear
Schrödinger equation, and it is generally difficult or not possible to
solve analytically for optimal controls.

However, for the simplest problems, alternate analytic solution
strategies are possible.
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Temperature control

The temperature in a room is denoted y(t). It is desired to heat the
room (to a target temperature) using the smallest possible amount of
energy (heat). Let the ambient (external) temperature be denoted ye .
The rate of heat supply to the room is denoted u(t). The dynamics of
temperature change are then given by

dy

dt
= −a(y(t)− ye) + bu(t)

where a, b are constants depending on the insulation and rate of heat

transfer. Let the total energy (heat) be given by 1
2

∫ T

0
u2(t) dt. We are

given the initial temperature x(0).

The problem: Calculate the control function ū(t) that heats the room
to temperature yf at time T while minimizing the energy used, using two

possible performance indices: a) J = 1
2

∫ T

0 u2(t) dt; b)

J = k [y(T )− yf ]
2 + 1

2

∫ T

0
u2(t) dt (i.e., the final temperature need not

be precisely yf ).
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Example: temperature control

Let x(t) = y(t)− ye and xf = yf − ye . If Lagrange,

J =

∫ T

0

L(t) dt

Problem is min
u(t)

J subject to dx
dt

= −ax(t) + bu(t)

1
dx
dt

= Ax(t) + Bu(t)
2 x(T ) = xf

If Bolza,

J = F (x(T )) +

∫ T

0

L(t) dt

F (x(T )) = k [x(T )− xf ]
2. min

u(t)
J subject to

1
dx
dt

= Ax(t) + Bu(t)
2 φ(T ) = ∇x(T )F (x(T ))
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Example: temperature control

The PMP-Hamiltonian is:

H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t),Ax(t) + Bu(t)〉
= ku2(t)− φ(t)ax(t) + φ(t)bu(t)

The adjoint variational equation is:

dφ(t)

dt
= −∇xH(x(t), φ(t), u(t))

= − ∂

∂x(t)
[−φ(t)ax(t) + φ(t)bu(t)]

= φ(t)a
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Example: temperature control (cont)

Integrate above homogeneous 1st order ODE w const coeffs:

dφ(t)

dt
= φ(t)a

φ(t) = c exp(at)

Expressing c in terms of φ(T ):

c = exp(−aT )φ(T )

φ(t) = exp[−a(T − t)]φ(T )
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Example: temperature control (cont)

∂H

∂u(t)
= φ(t)b + ū(t) = 0, 0 ≤ t ≤ T

or ū(t) = −φ(t)b. Now, insert implicit expression for control (in terms of
φ(t)) into the dynamical equation of the variational system (1st E-L
equation):

dx

dt
= −ax(t)− b2φ(t)

= −ax(t)− b2 exp[−a(T − t)]φ(T )
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Example: temperature control (cont)

The equation dx
dt

= −ax(t)− b2 exp[−a(T − t)]φ(T ) can be integrated
analytically via Laplace transforms:

The Laplace transform of ax(t) is aX (s)

The Laplace transform of exp(at) is 1
s−a

Laplace transform of dx
dt

is sX (s)− x(0)

Thus, in the frequency domain,

X (s) = x(0)
s+a

− b2 exp(−aT )φ(T ) 1
(s+a)(s−a)
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The inverse LT of 1
s+a

(L−1( 1
s+a

)) is exp(−at)

Partial fraction expansion of 1
(s+a)(s−a) :

1

(s + a)(s − a)
=

α1

s + a
+

α2

s − a

1 = α1(s − a) + α2(s + a)

Let s = a; then α2 =
1
2a

Let s = −a; then α1 = − 1
2a

1
(s+a)(s−a) =

1
2a

[

1
s−a

− 1
s+a

]

L−1

[

1

(s + a)(s − a)

]

=
1

2a
L−1

[

1

s − a
− 1

s + a

]

=
1

2a
[exp(at)− exp(−at)]

=
1

a
sinh(at)

So

x(t) = x(0) exp(−at)− b2

a
exp(−aT )φ(T ) sinh(aT )



Note both optimal control and state trajectory expressed implicitly
in terms of φ(T ); need φ(T ) to solve control problem

Two ways to obtain φ(T ):
1 Lagrange cost: use endpoint constraint on state, i.e., x(T ) = xf and

solve for φ(T ) from

xf = x(0) exp(−at)− b2

a
exp(−aT )φ(T ) sinh(aT )

2 Bolza cost: use boundary condition

φ(T ) = ∇xF (x(T ))

= 2k[x(T ) − xf ]

Then, obtain optimal control ū(t) by substituting the known value
of φ(T ) into the parametric expression for ū(t):

ū(t) = −φ(t)b
= exp[a(T − t)]φ(T )b

= exp[a(T − t)]2k [x(T )− xf ]b

and finally insert into dynamical equation of variational system to
obtain optimal trajectory (here, temperature of the room as a
function of time).



Example: temperature control - Lagrange solution

xf = x(0) exp(−aT )− b2

a
exp(−aT )φ(T ) sinh(aT )

Solve for φ(T ):

φ(T ) = (xf − x(0) exp(−aT ))
a

b2
exp(aT )(sinh(aT ))−1

= (xf − x(0) exp(−aT ))
2a

b2
(1 + exp(−2aT ))−1

Insert into ū(t) expression:

ū(t) = exp[−a(T − t)]φ(T )b

= exp[−a(T − t)] (xf − x(0) exp(−aT ))
2a

b
(1 + exp(−2aT ))−1

Consider the case where the target temperature is xf = 10 and the
initial temperature is x(0) = 0;

ū(t) = exp[−a(T − t)]
20a

b
(1 + exp(−2aT ))−1

Now verify the solution by inserting the ū(t) into x(t) expression:

x̄(t) = 10
sinh at

sinh aT



Example: temperature control - Bolza solution

For Bolza functionals, since φ(T ) = ∇xF (x(T )) = 2k [x(T )− xf ]

Now solve for x(T ) using this expression (again assume x(0) = 0
and xf = 10):

x(T ) +
b2

a
exp(−aT )2kx(T ) sinh(at) =

b2

a
exp(−aT )2kxf sinh(aT )

x(T ) =
b2

a
exp(−aT )2kxf sinh(aT )

1 + 2k b2

a
exp(−aT ) sinh(aT )

=
10b2k sinh(aT )

a exp(aT ) + 2b2k sinh(aT )

Obtain optimal control ū(t):

ū(t) = exp[a(T − t)]φ(T )b

= exp[a(T − t)]2k [x(T )− xf ]b

= exp[a(T − t)]2k [
10b2k sinh(aT )

a exp(aT ) + 2b2k sinh(aT )
− xf ]b

Now verify the solution by inserting the u(t).
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Angular momentum

Classical angular momentum: L = rxp

Quantum angular momentum: quantize by replacing r, p by their
quantum operator analogs:

Lx = −i~(y
∂

∂z
− z

∂

∂y
),

etc.

To solve for eigenfunctions, necessary to switch to spherical
coordinates; expression for Laplacian complicated, will not study

Eigenvalues of |L|2 are ~
2l(l + 1); of Lz are ~m, where −l ≤ m ≤ l
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What is spin?

Particles in quantum mechanics (including both electrons and
nuclei) have an intrinsic property called spin, which is a form of
angular momentum

The spin magnetic moment (which we denote by µs) is proportional
to the total spin S

Analogously to the dipole interaction with the electric field, the
magnetic field-spin interaction energy is −µs ·B = cS ·B
It is possible to manipulate nuclear spins in molecules without
affecting the rotational, vibrational, or electronic states; thus we
focus on nuclear spins
√

〈|S|2〉 is the expectation value of the norm of the total spin
angular momentum of the particle
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Pauli spin operators

Observables corresponding to the x , y and z components of particle
spin are Sx , Sy , Sz :

Sx =
~

2

[

0 1
1 0

]

, Sy =
~

2

[

0 −ı
ı 0

]

, Sz =
~

2

[

1 0
0 −1

]

.

Eigenvalues are ~

2 , − ~

2 (“spin-1/2” particles)

Commutation relations are: [Si , Sj ] = i~ǫijkSk where ǫijk is a
completely antisymmetric tensor

These are called the the fundamental commutation relations of
angular momentum and are satisfied by any form of angular
momentum
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Tensor products of Hilbert spaces: vectors

The tensor product (or direct product) of Hilbert spaces is denoted
H1 ⊗H2; its dimension is m1m2, where m1,m2 are the dimensions
of H1,H2, respectively (since there are m1m2 possible joint states)

Consider the matrix representation of a vector in this product space:
it is denoted |ψ〉 ⊗ |φ〉, where ⊗ now refers to the vector Kronecker
product

Let |ψi 〉 (i = 1, · · · ,m) denote the basis vectors of |ψ〉 and |φj〉
(j = 1, · · · , n) denote those of |φ〉. The Kronecker product of
column vectors |ψ〉, |φ〉 has as basis vectors
|(ψ ⊗ φ)ni+j+1〉 = |ψi , φj〉. (Note this is different from the outer
(tensor) product of the vectors.)
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Tensor products of Hilbert spaces: operators

The same principle holds for tensor products of the sets of operators
acting on H1, H2 (i.e., B(H1), B(H2))

The Kronecker product of (order mxm, nxn) matrices A,B, denoted
A⊗ B ≡ C , has the form







a11B · · · a1mB
...

. . .

am1B · · · ammB







In particular, an operator A in B(H1) has representation A⊗ In
(Kronecker product) on H1 ⊗H2 (direct product)

One may also have tensor products of finite-dimensional and
infinite-dimensional Hilbert spaces
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Schrödinger equation for single spin in time-varying xy

magnetic field

H1 = cSxBx(t) + cSyBy (t)

The static magnetic field is much stronger than the time-varying one

d

dt
ψ(t) = − i

~
[cB(t) · S]ψ(t)

= − i

~
[cSzBz + cSxBx(t) + cSyBy (t)]ψ(t)

Let c = 1 for convenience, and use standard notation εx(t) ≡ Bx (t),
εy (t) ≡ By (t) for controls. Note we now have vector of controls as well
as state vector (both 2-dimensional in this case).
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Example: quantum state control of a single spin with

minimal energy

For Lagrange type cost functionals with bilinear qc systems, the
special case of a quadratic cost on the controls is worth attention
because of its interpretation in terms of the total fluence of the field.
Consider case with two controls εx(t), εy (t).

The problem

Find the time-varying fields εx(t) and εy (t) that drive the system to a
specified final state ψf at time T using minimal energy. The dynamical
equation is

d

dt
|ψ(t)〉 =− i

~
S ·B(t)|ψ(t)〉

− i

~
[SzBz + Sxεx(t) + Syεy (t)]ψ(t)〉
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Example: quantum spin state control (cont)

The cost functional is L(εx(t), εy (t)) =
1
2(ε

2
x(t) + ε2y (t)), Let

F (ψ(T )) = ℜ〈ψf |ψ(t)〉. We want F (ψ(T )) = 1, i.e., achieve
ψ(T ) = ψf within a global phase.

Lagrange formulation:

J =
1

2

∫ T

0

ε2x(t) + ε2y (t) dt

H(ψ(t), φ(t), ~ε(t)) =
1

2
(ε2x(t) + ε2y(t))−

〈φ(t)| i
~
[SzBz + Sxεx(t) + Syεy (t)|ψ(t)〉
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Example: quantum spin state control (cont)

The costate equation is

dφ†(t)

dt
= −∇ψ(t)H(ψ(t), φ(t), ε(t))

=
i

~
φ†(t) [SzBz + Sxεx(t) + Syεy(t)]

or
dφ(t)

dt
= − i

~
[SzBz + Sxεx(t) + Syεy (t)] φ(t)
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Example: quantum spin state control (cont)

The PMP demands

∇~ε(t)H(ψ(t), φ(t), ~ε(t)) ≡ 0

or

εx(t) =
i

~
〈φ(t)|Sx |ψ(t)〉

εy (t) =
i

~
〈φ(t)|Sy |ψ(t)〉

Now we could insert these into the Schrödinger equation and solve but
note that the resulting ode is nonlinear. Instead, we apply additional
conditions following from the PMP. The above equations imply

dεx(t)

dt
=

i

~

{

〈 d
dt
φ(t)|Sx |ψ(t)〉 +

〈

φ(t)|Sx |
d

dt
ψ(t)〉}

dεy (t)

dt
=

i

~

{

〈 d
dt
φ(t)|Sy |ψ(t)〉 + 〈φ(t)|Sy |

d

dt
ψ(t)〉

}
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Example: quantum spin state control (cont)

〈 d
dt
φ(t)|Sy |ψ(t)〉 =

i

~
φ†(t) [SzBz + Sxεx(t) + Syεy (t)] Syψ(t)

〈φ(t)|Sy |
d

dt
ψ(t)〉 = − i

~
φ†(t)Sy [SzBz + Sxux(t) + Syuy (t)]ψ(t)

Recall Pauli commutation relations: [Si , Sj ] = i~ǫijkSk where ǫijk denotes
the elements of a completely antisymmetric tensor. So

ε̇x(t) = −(
i

~
)2(φ†(t)[Sx , Sy ]εy(t)ψ(t) + φ†(t)[Sx , Sz ]ψ(t)Bz )

= − i

~

2

(iφ†(t)Szψ(t)εy (t)− iφ†(t)Syψ(t)Bz )

ε̇y (t) = −(
i

~
)2(φ†(t)[Sy , Sx ]εx(t)ψ(t) + φ†(t)[Sy , Sz ]ψ(t)Bz )

=
i

~

2

(iφ†(t)Szψ(t)εx(t)− iφ†(t)Sxψ(t)Bz )
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Additional conserved quantities: expectation value of Sz

Note that we still have expressions for εx(t), εy (t) that are implicit
functions of the state and costate.
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Additional conserved quantities: expectation value of Sz

Note that we still have expressions for εx(t), εy (t) that are implicit
functions of the state and costate.

According to the condition d
dt

(

∂H
∂ε(t)

)

= 0, there are additional

conserved quantities (as long as ∂H
∂ε(t) is not an explicit function of

time). These can help us solve the Lagrange control problem
analytically if the dimension of the system is sufficiently small, so
that the additionally conserved quantities provide enough additional
conditions to fully specify the optimal control.
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Additional conserved quantities: expectation value of Sz

Note that we still have expressions for εx(t), εy (t) that are implicit
functions of the state and costate.

According to the condition d
dt

(

∂H
∂ε(t)

)

= 0, there are additional

conserved quantities (as long as ∂H
∂ε(t) is not an explicit function of

time). These can help us solve the Lagrange control problem
analytically if the dimension of the system is sufficiently small, so
that the additionally conserved quantities provide enough additional
conditions to fully specify the optimal control.

In the present case we have ∂
∂Bz

H(ψ(t), φ(t), ε(t)) = 0 and hence

d
dt

[

∂
∂Bz

H(ψ(t), φ(t), ε(t))
]

= 0 giving us the conserved quantity

〈φ(t)|Sz |ψ(t)〉 = K .
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Example: quantum spin state control (cont)

Applying the latter conservation law in the equations for ε̇x(t) and ε̇y(t),
and recalling that i

~
φ†(t)Syψ(t) = εy (t) (similarly for εx), we obtain the

coupled system of first order ODEs

ε̇x(t) = −(K − Bz )εy (t)

ε̇y (t) = (K − Bz)εx(t)

which has (parametric) solutions

εx(t) = C cos(ωt + α)

εy(t) = C sin(ωt + α)
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Example: quantum spin state control (cont)

Next step: Solve for C (field’s temporal amplitude scale), ω (field
frequency), and α (field phase) given endpoint constraint, ψ0

(normalization is implicit in these conditions)

Need to insert parametric solns into dynamical or costate equations
and explicitly integrate.

d

dt
|ψ(t)〉 = − i

~
[SzBz + CSx cos(ωt + α) + CSy sin(ωt + α)] |ψ(t)〉

= − i

~

(

Bz C exp[−i(ωt + α)]
C exp[i(ωt + α)] −Bz

)

|ψ(t)〉

subject to ψ(T ) = ψf (two conditions), ψ(0) = ψ0 (one additional
condition) In the homework, we will solve for ψ(t) in 1st-order
perturbation theory.

Note the system of dynamical odes is coupled due to norm
constraint on ψ
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The need for numerical optimization

Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional
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The need for numerical optimization

Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional

For a Bolza-type cost functional, the PMP optimality condition can
be solved implicitly for the control field,
ε(t) = i

~
Tr

(

U†(T )∇U(T )F (U(T ))U(†t)µU(t)
)

, as in the case of
Lagrange costs.
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The need for numerical optimization

Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional

For a Bolza-type cost functional, the PMP optimality condition can
be solved implicitly for the control field,
ε(t) = i

~
Tr

(

U†(T )∇U(T )F (U(T ))U(†t)µU(t)
)

, as in the case of
Lagrange costs.

However, since Φ(T ) is no longer free and depends on the final time
propagator U(T ), integration of the Schrödinger equation with this
implicit expression for the field is not possible and numerical
optimization is needed.
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The need for numerical optimization

Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional

For a Bolza-type cost functional, the PMP optimality condition can
be solved implicitly for the control field,
ε(t) = i

~
Tr

(

U†(T )∇U(T )F (U(T ))U(†t)µU(t)
)

, as in the case of
Lagrange costs.

However, since Φ(T ) is no longer free and depends on the final time
propagator U(T ), integration of the Schrödinger equation with this
implicit expression for the field is not possible and numerical
optimization is needed.

More generally, even for Lagrange costs, if the dynamical and adjoint
(systems of) ODEs do not afford analytical solutions (recall we
solved only special simple cases above), numerical optimization is
needed.
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Feedback control with Bolza functionals

Now consider linear system with nonzero u(t) and cost

J =
∫ T

0
xT (t)Qx(t) + uT (t)Ru(t) dt + 1

2x
T (T )S(T )x(T ) (i.e.,

unlike the Lagrange functional with endpoint state constraint used
for controllability analysis, use a Bolza functional with the Lagrange
term also containing quadratic cost on x(t)). The final state is thus
not constrained; and the cost on the state will enable us to
formulate time-varying feedback control

By appropriately large weighting of 1
2x

T (T )S(T )x(T ), can drive
x(T ) arbitrarily close to desired endpoint, while executing feedback
along trajectory, if system controllable

With T → ∞, control system is called linear quadratic regulator
(LQR)

In these deterministic feedback control problems, we do not update
state estimates with observations; we assume the state is can be
directly measured at any time t; later we will discuss linear quadratic
Gaussian regulator (LQG), which is stochastic feedback control
problem where state must be estimated



Kalman gain

The PMP-Hamiltonian system is:

[

dx
dt
dφ
dt

]

=

[

A −BR−1BT

−Q −AT

] [

x(t)
φ(t)

]

with the 2N × 2N matrix denoted the PMP-Hamiltonian matrix H

Recall: to assess controllability, let −Q = 0; to assess observability,
let −BR−1BT = 0

Generalizing the scalar solution, implicitly, optimal control is
ū(t) = −R−1BTS(t)x(t), where we have made the linear ansatz
φ(t) = S(t)x(t)

dx

dt
= Ax(t)− BR−1BTS(t)x(t)

= (A− BK (t))x(t)

K (t) = R−1BTS(t) is called the Kalman gain; it provides
(time-varying) state-dependent feedback to the control

To solve the problem, we need to find the matrix function S(t); we
will later show that S(T ) is the same as that which appears in the
cost functional
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Asymptotic convergence, Lyapunov functions

Consider the deviation variable (error residual) x̃(t) = x(t)− x̄ ,
where x̄ denotes the fixed point (̇̄x = 0)

For a linear system, d
dt
x̃(t) = Ax̃(t)

Consider the cost function J(x̃) = 1
2 x̃

TSx̃ with S = DTD

(symmetric, positive definite)

If J̇(x̃) decreases monotonically in the vicinity of a fixed point
(converging to the unique value), it is said to be a Lyapunov
function and the neighborhood is said to be stable (for linear system,
the system is stable); this definition holds for more general functions
than the one above

Then, if
∫∞

0 x̃T (t)Sx̃(t) dt is bounded, the linear(ized) system is
said to be exponentially asymptotically stable (for a linear system,
globally stable) Occurs if A has only negative real parts to all its
eigenvalues.

Exponential convergence (stability):

||x̃(t)|| = ||exp(At)x̃(0)||
||x̃(t)|| ≤ k exp(−λi t) ||x̃(0)|| ,

where λi denotes the smallest (in absolute value) real part of an
eigenvalue of A



Lyapunov equations

A (differential) Lyapunov equation with Lyapunov function
J(x) = 1

2x
TS(t)x is of the form Ṡ(t) = S(t)A+ATS(t) +T , where

T is positive definite; solve with either S(0) or S(T ) given

Soln to diff Lyapunov equation converges to constant matrix S if the
system is asymp. stable. There, Ṡ = 0

An algebraic Lyapunov equation is derived from steady state
condition Ṡ = 0; it is the resulting Lyapunov equation with S = S(0)
(for a backwards integrated differential Lyapunov equation)

To see the origin of the (algebraic) Lyapunov equation, compute
J̇(x(t)) for a linear dynamical system:

J̇(x(t)) =
1

2
ẋTSx

= xTSẋ

= xTSAx

= xT (SA + ATS)x

where the last line follows since the scalar (xTSAx)T = xTATSx .
For J̇(x) < 0, must have SA+ ATS negative definite
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Riccati equations
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Lyapunov equations in optimal control

In either case, solve for S(0) or S(t); solve algebraic Lyapunov
equation to obtain steady-state (asymptotic) cost and steady-state
feedback gain (latter through a minor variation called Riccati eqn)

Time-invariant control strategies (i.e., u(t) = c , a constant) often
chosen to stabilize otherwise unstable dynamical systems; are based
on steady-state gain

Optimal feedback control strategies u(x(t)), discussed below, are
based on appropriate choice of cost function, esp Lagrange term
L(x(t)) = 1

2x
T (t)Qx(t) + 1

2u
T (t)Ru(t), through choice of weighting

matrices Q and R
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Riccati equation

d

dt
φ(t) =

d

dt
[S(t)x(t)] = Ṡ(t)x(t) + S(t)ẋ(t)

= Ṡ(t)x(t) + S(t)(Ax(t) + Bu(t))

−Qx − ATφ(t) = Ṡ(t)x(t) + S(t)(Ax(t) − BR−1BTφ(t))

−Qx − ATS(t)x(t) = Ṡ(t)x(t) + S(t)(Ax(t) − BR−1BTS(t)x(t))

Ṡ(t)x(t) = (ATS(t)− S(t)A+ S(t)BR−1BTS(t)− Q)x(t)

Ṡ(t) = −ATS(t)− S(t)A+ S(t)BR−1BTS(t)− Q

For this system, the optimal feedback gain is time varying:
K (t) = R−1BTS(t); to obtain, must solve Riccati equation for S(t)
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Riccati equation (cont)

Riccati equation is propagated backwards in time (since S(T )
specified); asymptotic limit is T − t → ∞ (assume T → ∞, then
can set t = 0)

Formal solution possible, but requires solution of complete
PMP-Hamiltonian linear system, as in case of temperature control
problem in HW 2; this is due to coupling (presence) of x(t), φ(t) in
both state, costate odes: revisit later

Solution S(0) (by backwards integration) to (differential) Riccati
equation with boundary condition lim

T→∞
S(t) is a constant. The

corresponding algebraic Riccati equation
−ATS(0)− S(0)A+ S(0)BR−1BTS(0)− Q = 0 is solved for S(0).
Note that with S(0)BR−1BTS(0)− Q positive-definite this satisfies
the conditions for a algebraic -Riccati- equation

The corresponding feedback gain is called the steady-state feedback
gain; linear systems are stable with it, as long as systems are
controllable
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Observability Lyapunov equation

With only 1
2x

TQx term in J, Ṡ ode is called observability Lyapunov
equation

d

dt
φ(t) =

d

dt
[S(t)x(t)] = Ṡ(t)x(t) + S(t)ẋ(t)

−ATφ(t) − Qx = Ṡ(t)x(t) + S(t)Ax(t)

−ATS(t)x(t) − Qx = Ṡ(t)x(t) + S(t)Ax(t)

Ṡ(t) = −S(t)A− ATS(t)− Q

φ(t) = S(t)x(t) again, but solution S(t) differs from LQR

Can be formally integrated in closed form analogously to x(t) for
time-invariant linear system

S(t) = exp[AT (T − t)]S(T ) exp[A(T − t)]+

+

∫ T

0

exp[AT (T − t)]Q exp[A(T − t)] dt



Controllability Lyapunov equation

With only uTRu term in J, the corresponding matrix ode is called
controllability Lyapunov equation

Controllability Lyapunov equation not expressed in terms of S , rather

Ṗ(t) = P(t)A+ ATP(t) + BR−1BT

Formal solution similar:

P(t) = exp[At]P(0) exp[AT t] +

∫ T

0

exp[At]BR−1BT exp[AT t] dt

(unlike Ricatti and observability Lyapunov equations, propagated
forward in time)

By using P(0) = 0, solution for P(t) provides controllability
Gramian: may enable simple solution of linear, quadratic control
cost problems

Next time will discuss stabilizability, which involves choosing a
(feedback) control strategy that causes the system to converge
asymptotically to a fixed point. In so doing we will discuss the
relationship between the optimal control time-domain and frequency
domain control formulations (latter typically not optimal)



Cost “to-go”

The cost to-go J(t) is the cost incurred over the trajectory portion
[t,T ]; minimized over the remaining trajectory, irrespective of the
prior trajectory, in closed-loop feedback.
Being a Lyapunov function, J(t) must decrease monotonically over
time (if the system is stable)
Example: J(t) = 1

2x
T (t)S(t)x(t) for observability Lyapunov

equation; check:

xT (T )S(T )x(T ) =

∫ T

0

d

dt
(xT (t)S(t)x(t)) dt + xT (0)S(0)x(0)

=

∫ T

0

ẋT (t)S(t)x(t) + xT (t)Ṡ(t)x(t) + xT (t)S(t)ẋ(t) dt + xT (0)S(0)x(0)

=

∫ T

0

xT (t)ATS(t)x(t) + xT (t)(−S(t)A− ATS(t)− Q)x(t)+

+ xT (t)S(t)Ax(t) dt + xT (0)S(0)x(0)

xT (0)S(0)x(0) = xT (T )S(T )x(T ) +

∫ T

0

xT (t)Qx(t) dt
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Cost “to-go” (cont)

J(t) = 1
2x

T (t)S(t)x(t) +
∫ T

0

∣

∣

∣

∣R−1BTQx − u(t)
∣

∣

∣

∣

R
dt for

Lyapunov equation with suboptimal feedback; 1
2x

T (t)S(t)x(t) dt
for Riccati equation (optimal feedback)

In both cases, J is a Lyapunov function; (since) S(t) is positive
definite and the Lyapunov condition is satisfied with positive-definite
Q, J̇(t) is negative definite for all t; allows us to assess asymptotic
stability through cost function alone
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Feedback control of time-invariant linear systems
Lyapunov equations

Dynamic programming

Riccati equations
Analytic solution to algebraic Riccati equation

Hamiltonian matrices

Our goal is to find steady-state optimal control ū(x(t)) such that
system, if unstable, is stabilized. Need to solve the
PMP-Hamiltonian system.

Let

J =

[

0 −I

I 0

]

Note J−1 = JT = −J.

A Hamiltonian matrix H satisfies JHJ = HT

Any matrix of the form

[

A B

C −AT

]

where B = BT , C = CT , is a Hamiltonian matrix (verify).
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Left/right eigenvalues and eigenvectors (of Hamiltonian
matrices)

Since Hamiltonian matrices are not symmetric, they can have
complex eigenvalues
They will also have left and right eigenvectors, each associated with
the same set of complex eigenvalues
A left eigenvector ω satisfies ωTH = αωT , where ω is a scalar
Let Hν = λν, where λ is the eigenvalue associated with eigenvector
ν. Then

νTHT = λνT

νT JTHJT = λνT

−νT JTH = −λνT JT

(Jν)TH = −λ(Jν)T

Thus Jν is a left eigenvector of H with eigenvalue −λ (the
eigenvalues thus come in pairs). (note we thus only have to solve for
the right eigenvectors and automatically obtain the left).
Note that for a general linear system ẋ = Ax , A will also have
left/right eigenvectors and complex eigenvalues. The (open loop)
system is (asymptotically) stable if all eigenvalues have negative real
parts.



Diagonalization of Hamiltonian matrices

Based on the above result, the 2N × 2N Hamiltonian matrix H ,
when diagonalized, should look like





















λ1

. . .

λN

−λ1

. . .

−λN





















≡
[

M

−M

]

with λi ∈ C.

Recall the PMP-Hamiltonian system of 2N odes was

[

ẋ(t)

φ̇(t)

]

= H

[

x(t)
φ(t)

]

.

Substitute the expression for H in terms of its eigenvalue matrix,
H = EH̃DT , where E denotes the matrix whose columns are right
eigenvectors, and D the matrix whose columns are left eigenvectors



Solving for steady-state gain and optimal feedback control

Now can solve this ode system with time-invariant Hamiltonian as

[

x(t)
φ(t)

]

=

[

E11 E12

E21 E22

] [

exp(M)
exp(−M)

] [

DT
11 DT

21

DT
12 DT

22

] [

x(0)
Sx(0)

Since feedback controlled system stable,

DT
11x(0) + DT

21Sx(0) = 0

for all x(0) so that unstable modes do not contribute to the
dynamics; otherwise, x(t) will diverge as t → ∞
Solving for S ,

S = (DT
21)

−1DT
11

Thus the steady-state feedback gain is

K (∞) = R−1BTS = R−1BT (DT
21)

−1DT
11

and the optimal steady-state control is
u(x(t)) = −K (∞)x(t) = −R−1BT (DT

21)
−1DT

11x(t)



Stabilization of the closed loop system

Assuming the system is controllable (depends on A,B) and Q, R
positive definite, the closed loop system with steady-state optimal
feedback is stable irrespective of how many modes (eigenvectors) of
A are unstable.

The associated steady-state closed loop matrix Acl = A− BK (∞)
has N stable eigenvalues, which happen to be the N stable
eigenvalues −λ1, · · · ,−λN of the Hamiltonian matrix H . The
eigenvectors of A− BK (∞) are the columns of the matrix E11.

Recall the definition of the open loop transfer function for a single
input (control), single output (observation) system:

y(s)

u(s)
= C (sI − A)−1B

where C is 1× N and B is N × 1



Feedback control of time-invariant linear systems
Lyapunov equations

Dynamic programming

Riccati equations
Analytic solution to algebraic Riccati equation

Stabilization of the closed loop system (cont)

The characteristic polynomial of the open loop matrix A is given by
the determinant |sI − A|; solve for the poles of the open loop
transfer function

The feedback stabilized system, the poles vary as a function of the
elements of Q and R in the cost functional; the plot of the poles
versus these parameters is analogous to the root locus plot in
frequency domain control, where the poles are plotted versus
constant gain parameters to design the controller The closed loop
characteristic polynomial is

|sI − A+ BK (∞)|

whose roots all have negative real parts (reside on left half complex
plane).

With time-varying state feedback, the poles change over time
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1 Feedback control of time-invariant linear systems
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2 Lyapunov equations
Riccati equations
Analytic solution to algebraic Riccati equation

3 Dynamic programming
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Dynamic programming formulation of optimal feedback
control

Except for linear feedback control, methods we have studied based
on PMP not suitable for feedback control since they provide “open
loop” optimal controls and trajectories based on known initial state
x0; for linear systems, our ansatz φ(t) = S(t)x(t) was essential for
obtaining state feedback

PMP max/minimizes J(0)

Cost-to-go J(t) does not directly enter PMP formulation; useful to
formulate general nonlinear optimal feedback control law in terms of
cost-to-go

Make J a function of x , u, t instead of just u as in original PMP
formulation

Recall H = H(x , φ, u, t)

By adding x , t parameters to J, will see we can express Lagrange

multiplier φ(t) as partial derivative ∂J(x,t)
∂x

; note this is function of t
like φ(t)



Hamilton-Jacobi-Bellman equation

Cost-to-go is now expressed as J(x , u, t) rather than J(u, t); let

J(x , u, t) = F (x(T ),T ) +

∫ T

t

L(x(t ′), u(t ′), t ′) dt ′

This is fn of x through xt
Then

dJ(x , t)

dt
= −L(x(t), u(t), t)

For any control and associated trajectory,

dJ(x , t)

dt
=

∂J(x , t)

∂t
+

∂J(x , t)

∂x

dx

dt

=
∂J(x , t)

∂t
+

∂J(x , t)

∂x
f (x , u, t) = −L(x(t), u(t), t)

∂J(x , t)

∂t
= −L(x(t), u(t), t)) − ∂J(x , t)

∂x
f (x , u, t)

Hamiltonian now defined as
H(x , ∂J(x,t)

∂x
, u, t) = L(x(t), u(t), t) + ∂J(x,t)

∂x
f (x , u, t) instead of

H(x , φ, u, t) = L(x(t), u(t), t) + φT (t)f (x , u, t)
For optimal trajectory,

H(x̄(t), ∂J(x,t)
∂x

, ū(t), t) = min
u(t)

H(x(t), ∂J(x,t)
∂x

, u(t), t) as before



Feedback control of time-invariant linear systems
Lyapunov equations

Dynamic programming

Hamilton-Jacobi-Bellman equation (cont)

So HJB equation is

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t),

∂J∗(x , t)

∂x(t)
, u(t), t)

where J∗ denotes the optimal cost-to-go, which we will denote by
simply J

Partial differential equation for J(x , t); propagated backward in time
(since t is lower limit of Lagrange integral) from
J(x(T ),T ) = F (x(T ),T ) (at all pts on surface of admissible final
states x(T ))

Note equivalence between costate φ(t) and ∂J(x,t)
∂x

Solve for vector field of extremals ū(x , t) rather than a single
optimal control ū(t); vector field of extremals sometimes called
optimal policy (since control conditional on x)

Note x0 not explicitly specified
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Feedback control of time-invariant linear systems
Lyapunov equations

Dynamic programming

Optimal control solution strategy using HJB equation

Follow these steps:
1 Set up Hamiltonian as for PMP but with ∂J(x,t)

dx
replacing φ

T (t)

2 Use PMP condition ∂H
∂u(t)

= 0 to express ū(t) in terms of ∂J(x,t)
dx

(recall previously, we expressed in terms of φ(t))
3 Substitute ū(t) into Hamiltonian to obtain min

u(t)
H(x , u, ∂J(x,t)

dx
, t)

4 Write corresponding HJB equation and solve analytically or
numerically for J(x , t); if analytic solution exists, obtain feedback

control law (vector field) ū(x , t) from ū(x , t) = ∂J(x,t)
dx
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Feedback control of time-invariant linear systems
Lyapunov equations

Dynamic programming

Comparing the Hamilton-Jacobi-Bellman equation with the

PMP

HJB replaces φT (t) with ∂J(x,t)
∂x

HJB provides ū in state feedback form directly

Solve a scalar pde with N + 1 independent variables x , t rather than
2N-dim vector ode (PMP-Hamiltonian system) with 1 independent
variable t (latter is two-point boundary value problem)

Depending on solution method, PMP may not provide control in
state feedback form; e.g., with L(u(t)) = 1

2u
T (t)Ru(t),

ū(t) = BR−1BTφ(t), not a function of x since φ(t) not a fn of x

For certain integrable problems, e.g., LQR, PMP provides identical
results to HJB since it can provide optimal controls analytically in
feedback form

HJB essential for optimal control of stochastic processes (which we
study later) since control must always be formulated in terms of
state feedback

CHE 597 Optimal feedback control



HJB applied to linear quadratic regulator

Derived LQR feedback control law above using state, costate
equations and PMP

With minor variations can show HJB gives same result; start with
J(x , t) = 1

2x
TS(t)x(t) instead of φ(t) = S(t)x(t); then

∂J(x,t)
∂x(t) = S(t)x(t); ū(x , t) = −BR−1BTS(t)x(t) as before

Now use HJB equation ∂J(x,t)
∂t

= −min
u(t)

H(x(t), ∂J(x,t)
∂x(t) , u(t), t):

∂

∂t
[
1

2
xT (t)S(t)x(t)] = −1

2
xT (t)Qx(t)−

− 1

2
(BR−1BTS(t)x(t))TRBR−1BTS(t)x(t)

− [S(t)x(t)]T (A− BR−1BTS(t))x(t)

subject to J(x(T ),T ) = 1
2x

T (T )S(T )x(T )

Simplify and eliminate x(t) to obtain Riccati equation as above
(note: without using adjoint dynamical equation), with terminal
boundary condition S(T )

Can solve steady-state case analytically as above



Numerical methods for dynamic programming (discrete
time)

For nonlinear problems, typically no analytic solutions to HJB pdes.
Can discretize control, state, and time and apply the following
backwards-time algorithm to find the optimal feedback controls:

J∗(x , tk) = min
u(x,tk )

[L(x , u(x , tk ), tk)∆t + J∗(x +∆x , tk+1)]

with ∆x ≡ f (x , u(x , tk), tk)∆t and J(x(T ),T ) = F (x(T ),T )

1 For each tk , find J(x , tk) for all x , by computing J(u, x , tk) for all x
2 Choose J∗(x , tk) by choosing the u that gives the lowest cost for

each x
3 For each (x , tk) pair you will then have associated optimal cost

J∗(x , tk) to be used in subsequent steps
4 Step backwards in time to tk−1 and repeat



Feedback control of time-invariant linear systems
Lyapunov equations

Dynamic programming

Next time

Next time: how to optimally update a state estimate x̂(t) for a noisy
(stochastic) system based on observations made according to law
y(t) = Cx(t); will find “filtering” equations (Kalman-Bucy
equations) are dual to those for feedback control

Ultimately, will combine optimal state estimation and control for
stochastic feedback control
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Consistency, invariance and asymptotic normality

Consistency: An estimator θ̂m is consistent for the parameter θ
(written as plim θ̂m = θ0) if for every ǫ > 0,

lim
m→∞

Pθ

{

|θ̂m − θ0| ≥ ǫ
}

= 0.

Invariance: For an invariant estimator, c(θ) is c(θ̂m), for a
continuous and continuously differentiable function c(·).

Asymptotic Normality. For a sequence of estimators θ̂m, if

km

(

θ̂m − θ0

)

d→ N(0,Σ) as m → ∞, where
d→ denotes convergence

in distribution and km is any function of m, θ̂m is said to be√
km-consistent for θ and has an asymptotic normal distribution with

asymptotic covariance matrix Σ.



Least squares parameter (state) estimation

Extending our discussion of observability; goal is to: estimate
(parameters of) state x in presence of noise/random measurement
outcomes, based on m measurements

Again use deterministic observation law

y = Cx

(mean observation law), but now assume m× N matrix C has
m ≥ N (enables estimation of all parameters) and add noise such
that

z = y + w = Cx + w ,

with w a m-dimensional Gaussian noise vector; z = Cx + w is now
the stochastic observation law

Note C is in general not a change of basis even if N × N since not
necc orthogonal (i.e. CCT 6= I )



Least squares parameter estimation (cont)

If m measurements are iid, matrix C has identical rows and pdfs of
wi ’s are identical, and no covariance/correlation between
measurement outcomes
Let x̂ denote the estimated state; minimize least squares objective
function of error residuals (sum of squared measurement errors over
all state parameters/components)

J =
1

2
(z − Cx̂)T (z − Cx̂)

Note this only incorporates information about means yi of
observations through C , no other information about probability
distributions (pdfs) of w components; thus we can only obtain
parameter estimates x̂ (means of estimate distributions if estimator
unbiased), but not their uncertainties
Set dJ

dx̂
= 0 for minim; solve for x̂

dJ

dx̂
=

d

dx̂

1

2
(zT z − zTCx̂ − x̂TCT z + x̂TCTCx̂)

= −1

2
(CT z + CT z) + CTCx̂ = 0

x̂ = (CTC )−1CT z



Review of concepts from classical probability
From probability to statistical inference: Properties of estimators

The Kalman filter
Maximum likelihood estimation

Least squares estimation of parameter vectors

Thus state estimate is

x̂ = (CTC )−1CT z

(CTC )−1CT is called left pseudoinverse of C : compare
(ATA)−1AT = A−1 for square A; result would be same if we had
deterministic measurements (no noise) and we solved for x from
Cx = z ; estimator minimizes mean square error between estimates x̂i
and corresponding measurement outcomes (CTC )−1CT z + wi

across all i

Note CTC must be full rank (rank N);

For nonlinear observer (nonlinear least squares) must generally solve
for minimum of J numerically; application of optimization to
estimation
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Weighted least squares estimation

Incorporates information about variances of observations (e.g., if
pdfs of wi known) in order to provide (estimate of) (co)variance of
parameter estimates x̂i : Σ = E[(x − x̂)(x − x̂)T ]

Measurement residual covariance matrix (m ×m): R = E[wwT ],
assuming zero mean; note if this matrix has nonzero off-diagonal
elements, the measurements are correlated and hence not
independent (and not iid)

Each measurement zi/wi has different pdf (assumed to be Gaussian)
with variance Rii , and covariance between wi ,wj is Rij = Rji

For weighted least squares objective fn, let
J = 1

2 (z − Cx̂)TR−1(z − Cx̂); provides greater weights to
measurements with lower variances in providing parameter estimates
and estimator minimizes weighted mean square error between
estimates Cx̂i and corresponding measurement outcomes zi where
weights are proportional to (co)variances



Weighted least squares estimation

Setting dJ
dx̂

= 0 and solving

dJ

dx̂
=

d

dx̂

1

2
(zTR−1z − zTR−1Cx̂ − x̂TR−1CT z + x̂TCTR−1Cx̂)

= −1

2
(CTR−1zT + CTR−1zT ) + CTR−1Cx̂ = 0

x̂ = (CTR−1C )−1CTR−1z

Thus state estimate is x̂ = (CTR−1C )−1CTR−1z ; the matrix left
multiplying z is called the weighted left pseudoinverse of C

R is consistently estimated by sample covariance of measurements
(residuals); in simplest case is diagonal matrix of inverse weights
when measurements uncorrelated; but note this requires
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The Kalman filter
Maximum likelihood estimation

Least squares estimation of parameter vectors

Weighted least squares estimation (cont)

We obtain an estimate of the covariance matrix of the parameter
estimates as well:

Σ̂ = (CTR−1C )−1,

since (Σ̂)−1 = CTR−1C ; note if C is N × N identity matrix (each
measurement provides information on exactly one parameter), Σ̂ = R

If the pdfs of wi are Gaussian, and R is the true covariance matrix,
then we obtain the true covariance matrix of parameter estimates
from Σ = (CTR−1C )−1

Note that if the pdfs of wi are Gaussian, all information about them
is included within the means yi and the (co)variances Rij ; but if not,
information about the stochastic observation law is lost
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Least squares estimation of parameter vectors

Dynamic (recursive) linear least squares estimation

Now consider successive measurement “sets” z1, z2 (indexed by
time); and, where the measurement errors and observation law is
changing between sets; for our purposes will assume m

measurements (e.g. z1) all made at time t1, though need not be iid

As before x̂1 = (CTR−1
1 C )−1CTR−1

1 z1; update to x̂2 with
measurement set z2; x̂2 estimate obtained using all info, but
weighting t1 and t2 measurements appropriately

Again formulate least squares objective

J =
1

2
[z1 − C1x̂2, z2 − C2x̂2]

[

R−1
1 0
0 R−1

2

] [

z1 − C1x̂2
z2 − C2x̂2

]

Write dJ
dx̂

= 0: by direct extension of above, obtain

x̂2 = (CT
1 R−1

1 C1 + CT
2 R−1

2 C2)
−1(CT

1 R−1
1 z1 + CT

2 R−1
2 z2);

We are interested in how to update state estimate given new info;
hence want x̂2 in terms of x̂1
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Dynamic (recursive) linear least squares estimation

(CT
1 R−1

1 C1 + CT
2 R−1

2 C2)
−1 = (Σ−1

1 + CT
2 R−1

2 C2)
−1

Apply variant of Sherman-Morrison matrix inversion lemma; recall

(A+ u ⊗ v)−1 = A−1 − (A−1u)⊗(A−1v)
1−vTA−1u

Here,

(A+ BTC−1B)−1 = A−1 − A−1BT (BA−1BT + C )−1BA−1

Thus

(Σ−1
1 + CT

2 R−1
2 C2)

−1 = Σ1 − Σ1C
T
2 (C2Σ1C

T
2 + R2)

−1C2Σ1

so

x2 = [Σ1 − Σ1C
T
2 (C2Σ1C

T
2 + R2)

−1C2Σ1](C
T
1 R−1

1 z1 + CT
2 R−1

2 z2)
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Dynamic (recursive) linear least squares estimation

Multiplying the terms in the left bracket with the first term on the
right, obtain x̂1 − Σ1C

T
2 (C2Σ1C

T
2 + R2)

−1C2x̂1

Let Σ1C
T
2 (C2Σ1C

T
2 + R2)

−1 ≡ K2; thus have x̂1 − K2C2x̂1

Doing the same with the second term in the right bracket gives K2z2

Thus the recursive least squares state estimate update is
x̂2 = x̂1 + K2(z2 − C2x̂1); K2 is called the Kalman gain for the
estimator; updates estimate based on new observations z2

In continuous time obtain dx̂(t)
dt

= K (t)(z(t) − C (t)x̂(t)) for a
constant state vector that is measured with time-varying error and
observation law
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Propagation of the state and covariance estimates
(without new observations)

Assume we have state estimate x̂(0) and associated covariance
matrix of state estimates Σ(0)

Now turn on noisy linear dynamics governed by

dx

dt
= Ax(t) + Bu(t) + Dn(t)

where n is a N-dimensional white noise vector with covariance
matrix E[nnT ] = Q (note this Q differs from that used in
observability analysis)

How are the state estimates and covariance matrix propagated
through time given these dynamics? Want x̂(t) and Σ(t)



Propagation of the state and covariance estimates
(without new observations)

x̂(t) follows directly from our formal solution to linear vector ode:

x̂(t) = exp(At)x̂(0) +

∫ T

0

exp[A(t − t ′)]Bu(t ′)dt ′+

E

[

∫ T

0

exp[A(t − t ′)]Dn(t ′)dt ′

]

= exp(At)x̂(0) +

∫ T

0

exp[A(t − t ′)]Bu(t ′)dt ′

For covariance update, omit control for now for simplicity

Σ(t) = E[(x(t)− x̂(t))(x(t) − x̂(t))T ] =

= E

{

[

∫ T

0

exp[A(t − t ′)]Dn(t ′)dt ′ + exp(At)(x(0)− x̂(0))

]

∗
[

∫ T

0

exp[A(t − t ′)]Dn(t ′)dt ′ + exp(At)(x(0) − x̂(0))

]T
}
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Propagation of the state and covariance estimates

(without new observations)

Σ(t) = exp(At)Σ(0) exp(AT t)+

E

{

[
∫ t

0

exp[A(t − t ′)]Dn(t ′) dt ′
] [
∫ t

0

exp[A(t − t ′)]Dn(t ′) dt ′
]T
}

E

{

[
∫ t

0

exp[A(t − t ′)]Dn dt ′
] [
∫ t

0

exp[A(t − t ′)]Dn dt ′
]T
}

=

=

∫ t

0

exp[A(t − t ′)](Dn)(Dn)T exp[AT (t − t ′)] dt ′

=

∫ t

0

exp[A(t − t ′)]E[DnnTDT ] exp[AT (t − t ′)] dt ′

=

∫ t

0

exp[A(t − t ′)]DQDT exp[AT (t − t ′)] dt ′.
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Propagation of the state estimate (with new observations)

Next time: will look at evolution of state estimate with new
observations z(t):

dx̂

dt
= Ax̂ + K (z − Cx̂)

= (A− KC )x̂ + Kz

Note similarity to state feedback form of control law; now using
measurements to update state estimate rather than control the state

Recall: observations are dual to controls
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Adaptive Kalman filter

Filtering: optimal state estimation of dynamical systems

Since the state covariance of a stochastic dynamical system
increases with time of evolution, “optimal” feedback control based
on state estimate x̂(t) is prone to error

Filtering methods update the state estimate and its covariance
matrix optimally based on additional measurements made during
evolution; based on combination of i) state estimate / covariance
matrix updates in presence of measurements, but absence of
evolution; ii) state estimate / covariance matrix updates in presence
of evolution, but absence of measurements

Filters can be based on different estimators for the state and its
covariance; we are studying the simplest, the least squares filter

Kalman developed optimal least squares filter for linear dynamical
systems (previously we studied Kalman controllability and
observability rank conditions for linear systems)

Applications

CHE 597 Methods for state estimation



Recursive least squares estimators: from discrete to
continuous time

Recall

x̂2 − x̂1 = K2(z2 − C2x1);

Σ2 − Σ1 = −K2C2Σ1

R2 in K2 represents effect of instantaneous measurement noise; now
let us assume that noise enters measurement process continuously,
building over time

This is 1st step toward formulating continuous
observations/continuous state update; even though we are still
measuring at discrete times we need a continuous time
representation of our noise
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Let R(t2) denote the total measurement error (covariance) that has
built up over the interval ∆t due to noise error rate R2; so

R2 →
1

∆t
R(t2)

R−1
2 → R−1(t2)∆t

How to incorporate into expression for Kalman gain:

K2 = Σ1C
T
2 [C2Σ1C

T
2 + R2]

−1

Would be useful to have an expression “proportional” to R−1
2
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Recursive least squares estimators: from discrete to
continuous time

Rewrite K2 in a form “proportional” to the measurement error
matrix R2

K2 = Σ1C
T
2 [C2Σ1C

T
2 + R2]

−1

= Σ1C
T
2 [(C2Σ1C

T
2 R−1

2 + I )R2]
−1

= Σ1C
T
2 R−1

2 [I + C2Σ1C
T
2 R−1

2 ]−1

K2[I + C2Σ1C
T
2 R−1

2 ] = Σ1C
T
2 R−1

2

K2 = Σ1C
T
2 R−1

2 − K2C2Σ1C
T
2 R−1

2

K2 = (I − K2C2)Σ1C
T
2 R−1

2

By substituting Σ2 = Σ1 − K2C2Σ1 = (I − K2C2)Σ1: we can
eliminate K2 on the rhs and get the form of K2 that we want:

K2 = Σ2C
T
2 R−1

2

Making the substitution R−1
2 → R−1(t2)∆t, we obtain the form of

the gain we want:

K (t2) = Σ(t2)C
T (t2)R(t2)

−1∆t
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Recursive least squares estimators: from discrete to

continuous time

Now move to continuous updating of the state estimate by taking
lim

∆t→∞
in K (t2) = Σ(t2)C

T (t2)R(t2)
−1∆t

lim
∆t→∞

x̂(t2)− x̂(t1)

∆t
= lim

∆t→∞
K (t2)[z(t2)− C (t2)x̂(t1)]

dx̂(t)

dt
= K (t)[z(t)− C (t)x̂(t)]

Similarly, get dΣ(t)
dt

= −K (t)C (t)Σ(t)
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Differential equation for state covariance matrix with
propagation but no measurements

Recall without measurements,

Σ(t) = exp(At)Σ(0) exp(AT t)+

+ exp(At)[

∫ t

0

exp(−At ′)DQDT exp(−AT t ′) dt ′] exp(AT t)

Let exp(At)[
∫ t

0
exp(−At ′)DQDT exp(−AT t ′) dt ′] exp(AT t) ≡ H(t).

So

dΣ(t)

dt
= A exp(At)Σ(0) exp(AT t)+

exp(At)Σ(0) exp(AT t)AT + AH(t) + H(t)AT + DQDT

= AΣ(t) + Σ(t)AT + DQDT

This is for time-invariant A,D,Q; for time-variant A(t),D(t),Q(t),
replace exp(At) with formal propagator U(t); same form obtained

for dΣ(t)
dt

but with time-varying matrices
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Differential equation for state covariance matrix with

propagation and measurements

Denote the covariance matrix with measurements but without
propagation (dynamics) Σ1(t) and that without measurements but
with propagation Σ2(t); putting them together and replacing Σ1,Σ2

on the rhs w Σ(t)

dΣ1+2(t)

dt
=

dΣ1

dt
+

dΣ2(t)

dt

= −K (t)C (t)Σ(t) + AΣ(t) + Σ(t)AT + DQDT

= AΣ(t) + Σ(t)AT + DQDT − Σ(t)CT (t)R−1(t)C (t)Σ(t)

with Σ(0) = Σ0; where we have used K (t) = Σ(t)CT (t)R−1(t)

Hence with continuous least squares state estimation, obtain a
Riccati equation rather than a Lyapunov equation

Again, for time-varying linear systems, replace A,D,Q with
A(t),D(t),Q(t)
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Differential equation for state estimate with propagation

and measurements

Similarly, we get

dx̂1+2(t)

dt
= Ax̂(t) + K (t)[z(t) − C (t)x̂(t)]

= Ax̂(t) + Σ(t)CT (t)R−1(t)[z(t) − C (t)x̂(t)]

= Ax̂(t) + Σ(t)CT (t)R−1(t)z(t) − Σ(t)CT (t)R−1(t)C (t)x̂(t)
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Kalman filter equations

So the Kalman filter equations for optimal updating of the state
estimate and its error during dynamical evolution of a linear system
are

dx̂(t)

dt
= Ax̂(t) + Σ(t)CT (t)R−1(t)z(t)−

Σ(t)CT (t)R−1(t)C (t)x̂(t); x̂(0) = x̂0

dΣ(t)

dt
= AΣ(t) + Σ(t)AT + DQDT−

Σ(t)CT (t)R−1(t)C (t)Σ(t); Σ(0) = Σ0

Kalman filter minimizes state estimate covariance (mean square
error) by optimally mixing old and new measurements



Duality: Kalman filter equations vis-a-vis linear quadratic
regulator

Compare the Kalman filter equations to those for optimal feedback
control of linear systems to obtain a duality:

dx̂(t)

dt
= A(t)x̂(t) + Σ(t)CT (t)R−1(t)z(t) − Σ(t)CT (t)R−1(t)C (t)x̂(t);

x̂(0) = x̂0

dΣ(t)

dt
= A(t)Σ(t) + Σ(t)AT (t) + D(t)Q(t)DT (t)−

Σ(t)CT (t)R−1(t)C (t)Σ(t); Σ(0) = Σ0

vs

dx(t)

dt
= A(t)x(t) − B(t)K (t)x(t); x(0) = x0

= A(t)x(t) − B(t)R−1(t)BT (t)S(t)x(t)

dS(t)

dt
= S(t)A(t) + AT (t)S(t) + Q(t)− S(t)B(t)R−1(t)BT (t)S(t);

S(T ) = ST
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Duality: Kalman filter equations vis-a-vis linear quadratic

regulator

Ignoring the z(t) term, they are dual with the mappings

CT (t) → B(t)

Σ(t) → S(t)

x̂(t) → x(t)

and time reversed for the Riccati equation (in Riccati equation,
duality is more precise with A(t) → AT (t)).
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Adaptive Kalman filter equations

Adaptive Kalman filter enables estimation of dynamical parameters
as well as states; updates parameter estimates and their covariances
in real time

Let p denote a l-dimensional vector of parameters

Dynamical parameters could be elements of the matrices A or D;
i.e., we have A(p) or D(p); we consider the case D(p) because of its
interpretation in terms of the intensity of noise entering the system:
now dx

dt
= Ax(t) + D(p(t))n(t)

Accomplishes this by “augmenting” the state vector x(t) with the
parameters p(t); obtain a N + l-dimensional augmented vector
xa(t) = (x(t), p(t)); assume true p(t) = p(0) although estimate p̂

will evolve with time

The corresponding covariance matrix is then (N + l)× (N + l):
denote Σa

Want differential equations for x̂a(t)
dt

and Σa(t)
dt

Adaptive filtering introduces nonlinearities in the filtering equations

Applications



Adaptive Kalman filter equations

The adaptive Kalman filter equations for optimal updating of the
state estimate and its error during dynamical evolution of a linear
system are

dx̂a(t)

dt
=

d(x̂(t), p̂(t))

dt

= Aax̂a(t) + Σa(t)C
T
a (t)R−1

a (t)(za(t)− x̂a(t)); x̂a(0) = x̂a,0

dΣa(t)

dt
= AaΣa(t) + Σa(t)A

T
a + Da(p̂(t))QaD

T
a (p̂(t))−

Σa(t)C
T
a (t)R−1

a (t)Ca(t)Σa(t); Σa(0) = Σa,0
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Augmented matrices in the adaptive Kalman filter

The (N + l)× (N + l) matrix Qa is block diagonal with an N × N

block equal to Q and the other l × l block zero

The (N + l)× (N + l) Aa is block diagonal with an N × N block
equal to A and the other l × l block zero

The (m + l)× (m + l) matrix Ra is block diagonal with an m ×m

block equal to R and the other l × l block zero

The (N + l)×m matrix Ca has the upper N + l rows equal to C and
the other l rows zero

x̂a(0) = (x̂(0), p̂(0))

Note that the matrix Da(p) in the Riccati equation for Σa(t) must
be expressed in terms of the parameter estimates p̂(t); this increases
the nonlinearity of the differential equation
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Example of adaptive Kalman filter

Consider the linear stochastic system

[

ẋ1
ẋ2

]

=

[

1 0
0 1

]

x(t) +

[

d1 0
0 d2

]

n(t)

The parameter values d1, d2 are unknown, though we have initial
estimates and a covariance matrix for them

The dynamical equation for xa is









ẋ1
ẋ2
ḋ1
ḋ2









=









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

















x1
x2
d1
d2









+









d1 0 0 0
0 d2 0 0
0 0 0 0
0 0 0 0









na

In the Ricatti equation for the covariance update, we use

D(p̂(t)) =









d̂1(t) 0 0 0

0 d̂2(t) 0 0
0 0 0 0
0 0 0 0








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Maximum likelihood

MLE vs least squares: in least squares, can only estimate parameters
that are linear functions of the means of the pdfs of the
observations; in MLE can estimate any parameters that specify the
pdfs for the observations

yi ’s are means of zi pdfs, σi ’s are variances; can estimate y ′
i s and

xi ’s (latter are linear fns of the y ′
i s, but not σi ’s, by least squares

theory); MLE provides a theory for estimation of σi ’s as well

Achieves this by maximizing a function of all the parameters (here yi
or xi ’s, σi ’s)

By maximizing the log likelihood, the ML estimator minimizes the
Kullback-Leibler distance between the estimated and true probability
distributions.

Will show how this allows estimation of the variances σ2
i in the

expressions zi = yi + wi , where wi ∼ N (0, σ2
i ) in addition to the

means yi

Consider example of iid samples from a univariate Gaussian
distribution: have just one σ, one y
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Likelihood function; necessary conds for lhood

The likelihood function L(θ|z) is the joint density of the sample
defined as a function of the unknown parameter vector θ

Let z = (z1, · · · , zm) be an i .i .d . sample of size m from a population
with probability density function p(z |θ) which depends on the
unknown parameter vector θ whose true value is θ0. Typically, the
logarithm of the likelihood function, ln L(θ|z), is easier to maximize
numerically because of its separability.

The value of the parameter vector that maximizes the (log)
likelihood function is called the ML estimator of θ:

̂θmML = arg max
θ∈Θ

L(θ|z) = arg max
θ∈Θ

(

m
∏

i=1

p(z1|θ) · · · p(zm|θ)
)

,

where Θ denotes the admissible parameter space.
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Asymptotic efficiency of an estimator

Asymptotically efficient. A sequence of consistent estimators θ̂m is

asymptotically efficient if θ̂m − θ0
d→ N [0, I−1(θ0)] where

I (θ) = −E

[

∂2 ln L(θ|z)
∂θ∂θ′

]

; [I (θ0)]
−1 is called the Cramer-Rao lower bound

(CRB) for consistent estimators.
In practice, can usually use

̂I1(θ̂
m) = −

[

∂2 ln L(θ̂m|z)
∂θ∂θ′

]
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Example: MLE of Gaussian distribution parameters

We now show how to apply MLE to the case discussed above for a
single component state vector, observations of which are distributed
normally; the goal is to estimate the mean µ (as done above by least
squares, called x1 or y1 above) and also the variance σ2

1 of the
distribution

Parameter estimates: mean µ of Gaussian distribution; first assume
σ2 is known

p(z |µ) = 1√
2πσ2

exp

[

− (z − µ)2

2σ2

]

; L(µ|z) =
m
∏

i=1

1√
2πσ2

exp

[

− (zi − µ)2

2σ2

]

lnL =

m
∑

i=1

ln
1√
2πσ2

− (zi − µ)2

2σ2

d ln L(µ|z)
dµ

=

m
∑

i=1

zi − µ

σ2
= 0

µ̂ =
1

m

m
∑

i=1

zi
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Example: MLE of Gaussian distribution parameters (cont)

Parameter estimates: variance σ2; now assume mean µ is known

d ln L(σ|z)
dσ

=
d

dσ

[

m
∑

i=1

− ln
√
2πσ2 − (zi − µ)2

2σ2

]

= 0

m

σ
=

m
∑

i=1

(zi − µ)2

σ3

σ̂2 =

m
∑

i=1

(zi − µ)2

m

This is just the variance of the observations; note this could not be
obtained directly from least squares theory

If both µ, σ2 were simultaneously estimated, would substitute their
estimated rather than true values in the expressions above
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Example: MLE of Gaussian distribution parameters (cont)

We compute (asymptotic) µ̂ estimator uncertainty based on Fisher
information:

[

−d2 lnL(µ|z)
dµ2

]−1

=

[

−
m
∑

i=1

− d

dµ

µ

σ2

]−1

=
σ2

m

Note this is the same result as that used (though not derived) above
in least squares and also coincides with the variance σ2 of the
Gaussian distribution itself

Also, can show this is equivalent to result obtained from

E

[

(

d ln L(µ|z)
dµ

)2
]−1

Could even compute uncertainty in the estimate of σ2

Use MLE for constant state estimation, but we will use LS for
dynamic state estimation because like prev OCT theory minimizes
quadratic objective function and will exploit duality between control
and estimation
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Properties of maximum likelihood estimators

1 The ML estimator is consistent: plim ̂θmML = θ0.

2 The ML estimator is asymptotically normally distributed (and
asymptotically efficient):

√
m [θ̂mML − θ0] → N [0, I−1(θ0)],

where I (θ0) = −E

[

∂2 lnL(θ0|x)
∂θ∂θ′

]

.

3 The ML estimator of θ is invariant; e.g., as in least squares if I
estimate xi ’s, obtain yi estimates via ŷ = Cx̂
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The need for numerical algorithms

In the above examples, we were able to solve the score function
equations for the parameter estimates in closed form.

Typically, this is not possible, and the zeroes must be found using
numerical methods.
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Constrained optimization: Lagrange multipliers

Many MLE problems require imposition of constraints on
parameters.
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Constrained optimization: Lagrange multipliers

Many MLE problems require imposition of constraints on
parameters.

Requires constrained optimization, using a Lagrangian function
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Constrained optimization: Lagrange multipliers

Many MLE problems require imposition of constraints on
parameters.

Requires constrained optimization, using a Lagrangian function

Denote the vector of parameters (θ, λ, γ) ≡ t. Finding the
constrained optimum corresponding to this Lagrangian entails
searching for parameters t θi and slack variables γj that render the
gradient vectors ∇L(θ) and a linear combination of ∇(aj (θ)− γj),
j = 1, ...,N parallel.
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Algorithms for MLE estimation

There are two common approaches to solving this problem:

1 Minimization of the “sum of squares” (of the first-order conditions)

function
∑

i

(

∂L
∂ti

)2

;

2 Finding the roots of the system of nonlinear equations ∂L
∂t

= 0 using
the Newton-Raphson (NR) method.

In fact, methods 1) and 2) may be combined to produce a globally
convergent NR algorithm.
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Newton-Raphson method

The Newton-Raphson method is ideal... Writing ∂L
∂t

= H(t), the Newton
step for

H(t) = 0

is
tnew = told + δt,

with δt = −J−1H, where Jij =
∂Hi

∂tj
is the Jacobian matrix.
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Denoting the rows of H by Hi , we have: REPLACE W GENERAL
FORM

Hi(θ) =
∂L(θ, λ, γ|x)

∂θi
=

∂lnL(θ|x)
∂θi

= 0, 1 ≤ i ≤ N2 − 1,

HN2+j−1(θ) =
∂L(θ, λ, γ|x)

∂λj

= aj(θ) = 0, 1 < j ≤ N − 1,

HN2+N+j−2(λ, γ) =
∂L(θ, λ, γ|x)

∂γj
= 2λjγj = 0 1 < j ≤ N − 1.



Denoting the rows of H by Hi , we have: REPLACE W GENERAL
FORM

Hi(θ) =
∂L(θ, λ, γ|x)

∂θi
=

∂lnL(θ|x)
∂θi

= 0, 1 ≤ i ≤ N2 − 1,

HN2+j−1(θ) =
∂L(θ, λ, γ|x)

∂λj

= aj(θ) = 0, 1 < j ≤ N − 1,

HN2+N+j−2(λ, γ) =
∂L(θ, λ, γ|x)

∂γj
= 2λjγj = 0 1 < j ≤ N − 1.

In order to faciliate global convergence of the Newton-Raphson
algorithm, the “sum-of-squares” function h = H ·H is evaluated
after each iteration, and the step length progressively shortened until
the value of this function is found to decrease (the existence of such
a step length is guaranteed)
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(Provide some further details on NR from Press)
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Introduction to stochastic search algorithms

Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function

The number of local optima typically increases with the
dimensionality of the parameter space, the nonlinearity of the
objective function and constraints on the objective function

Unlike deterministic algorithms, stochastic search algorithms (SSA’s)
do not rely on derivatives of the objective function, but rather only
on the function itself

SSA’s are thus less prone to being trapped in local optima, though
they may converge slowly

SSA’s use a family of “walkers” that randomly traverse the
parameter space, accepting or rejecting moves based on comparison
of objective function values at different points

Depending on the ruggedness of the objective function, either
deterministic, hybrid deterministic/stochastic, or stochastic
algorithms may be used
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Expectation, (co)variance, correlation

A random variable is a map M : X → R, where X is called the
sample or state space

Expectation of a random variable: E[a] = 〈a〉 =
∫

A
ap(a) da

Sample mean:
∑N

i=1
ai
N

Covariance of random variables a and b:
∫

A

∫

B
(a− 〈a〉)(b − 〈b〉)p(a, b) da db

The covariance matrix of a multivariate random vector x (sample
space is vector space) is

E[(x − 〈x〉)(x − 〈x〉)T ] =
∫

X

(x − 〈x〉)(x − 〈x〉)T p(x)dx

Correlation of random variables a and b:
Cor(a, b) = Cov(a,b)√

Var(a)
√

Var(b)
. I.e., a “normalized” covariance.

Sample correlation:
∑

i

(ai−ā)(bi−b̄)

N
√∑

i
(ai−ā)2/N

√∑
i
(bi−b̄)2/N

.

CHE 597 - Quantum Control Engineering - Spring 2010 Stochastic processes and algorithms



Intro to stochastic algorithms
Review of classical probability

Stochastic processes
Autoregressive and Markov processes

Monte Carlo Methods

Statistical (in)dependence and conditional distributions

Joint distribution of random variables a and b: p(a, b)

Independently distributed: p(a, b) = p(a)p(b)

Independently and identically distributed:
p(a, b) = p(a)p(b) = p(a)p(a)

Conditional distribution of random variable a given b:

p(a|b) = p(a,b)
p(b)

Marginal (unconditional) distribution of random variable a (in a
multivariate distribution):

∫

B
p(a, b) db

Bayes’ rule: p(a|b) = p(b|a)p(a)
p(b)
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Stochastic processes: definitions

A stochastic sequence (discrete time stochastic process) is a
sequence (indexed set) of random variables, i.e.
x(ti ), i = 1, 2, 3, · · · , where each x(ti ) is a random variable and
where the index set is countable.

A continuous time stochastic process is one where the index set is
uncountable (e.g., t ∈ [0,T ]).
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Stochastic processes (cont)

Stationary (ergodic) stochastic process:
p(x(t)) = p(x(t ′)) ≡ π(x), ∀t ≥ t ′; there is a unique unconditional
distribution, which is called the stationary distribution, to which the
unconditional density converges over time.

Nonstationary stochastic process: may be different distribution
functions p(x(t)) at different times t: no unique unconditional
distribution.

Autocovariance:

Ex [(x(t)− Ex [x(t)])(x(t
′)− Ex [x(t

′)]] =
∫

X

∫

X

(x(t)− 〈x(t)〉)(x(t ′)− 〈x(t ′)〉)p(x(t), x(t ′)) dx(t) dx(t ′), t ≥ t ′

Autocorrelation:

Ex [(x(t)− 〈x(t)〉)(x(t ′)− 〈x(t ′)〉)]/σ(x(t))σ(x(t ′)) =
∫

X

∫

X
(x(t)− x̄(t))(x(t ′)− x̄(t ′)p(x(t), x(t ′)) dx(t) dx(t ′)

σ(x(t))σ(x(t ′))
, t ≥ t ′
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Stochastic processes (stationary)

For a sp that has converged to stationarity, joint distribution
p(x(t), x(t ′)) only depends on t − t ′

An ergodic sp can also be represented by an ensemble of chains; at
any given time this ensemble is characterized by an unconditional
distribution function p(x(t)) (frequency of walkers in state x at time
t), which may not be the stationary distribution, depending on each
chain’s initial state x(t0)

White noise stationary sp: autocorrelation 0 for all t ′ 6= t; for
Gaussian white noise, conditional and unconditional probabilities
equal, i.e., p(x(t)|x(t ′)) = p(x(t)), t ≥ t ′
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Markov chains

For algorithms, we will be most interested in discrete time sp’s

A general (discrete time) vector autoregressive process of order n
can be written:
x(ti+1) = A1x(ti ) + A2x(ti−1) + · · ·+ Anx(ti−n+1) + Qu(ti+1)
ui+1 denotes a zero-mean n-variate white noise, and QQT = QTQ

denotes the covariance matrix if u(ti ) each have unit standard
deviation

A Markov process is a discrete time autoregressive process of order 1
(compare first-order deterministic differential equation), i.e.,
x(ti+1) = Ax(ti ) + Qu(ti+1)(this equation is called a stochastic

difference equation).

A Markov chain path is a sequence of points (x(t1), ..., x(tm))
(draws) corresponding to a Markov process.

In general a Markov process is not stationary

From here on, we will use the notation x(ti ) ≡ xi (note we are not
referring to vector component indices with this subscript)
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Markov chain transition rules, matrices

For Markov chains on discrete state spaces, a transition matrix

defines the conditional probability of the various possible states at
time t = i + 1 depending on the state at time t = i .

An example of a transition probability matrix (also called a
stochastic matrix) for a 3-d state space is:

P =





0.5 0.5 0.25
0.25 0 0.25
0.25 0.5 0.5





The transition matrix must have columns summing to one, and
operates on either state vectors or probability vectors (those with
elements summing to one).

For a discrete state space, a state vector is of the form
x = (0, · · · , 1, · · · , 0)T
Eigenvectors and eigenvalues of P are important for characterizing
dynamics: these need not be probability vectors.
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Chapman-Kolmogorov equation

When P operates on a state vector, the result is a conditional
probability :Pxi = P(xi+1|xi ); when P operates on an
(unconditional) probability vector, the result is an unconditional
probability: Pp(xi ) = p(xi+1)

This is called the Chapman-Kolmogorov equation for evolution of
the marginal distribution associated with a stochastic process

For Markov chains on continuous state spaces (supports), we have a
transition rule which takes the form of a function p(x1|x2); the
requirement of columns summing to one is equivalent to
∫

X
p(x1|x2) dx1 = 1

For continuous state space:

p(xn) =

∫

X

p(xn|xn−1)

∫

X

p(xn−1|xn−2) · · ·

· · ·
∫

X

p(x1|x0) p(x0)dx0 · · · dxn−2 dxn−1

For discrete state space: p(xn) = Pnp(x0), with Pn a stochastic
matrix



Sufficient conditions for ergodicity

Compare the Kolmogorov equation to the action of the discrete time
dynamical propagator for deterministic dynamical systems (e.g.,
quantum systems): U(tn) = V (tn−1)V (tn−1) · · ·V (t0). Recall each
V (ti ) is identical for a time-independent Hamiltonian; compare Pn.

Conditions (on P) for ergodicity:

1 Irreducible: P has one unit eigenvalue λ1 = 1 (unique stationary
distribution)

2 Aperiodic: P does not have any eigenvalues λ = −1 (equilibria are
stable, so system does not oscillate between states in infinite time
limit).



Sufficient conditions for ergodicity: continuous
distributions

It can be shown that any scalar Markov process whose stochastic
difference equation is xi+1 = axi + qui+1 with |a| = 1 is
nonstationary (random walk), with a = 1 violating irreducibility and
a = −1 violating aperiodicity; moreover, a sufficient condition for
ergodicity is that |a| < 1.

For continuous state spaces (still discrete time), transition operator
is an integral operator and its eigenvalue spectrum (hence
convergence rate) is more difficult to determine analytically.

a is generally not directly known

However, there is a convenient condition for stationarity expressed in
terms of the transition probabilities p(xj |xi ) and the unconditional
distribution π(x).

Any Markov chain that satisfies the detailed balance condition
p(x2|x1)π(x1) = p(x1|x2)π(x2), where π(xi ) denotes the stationary
distribution and p(x2|x1) denotes an element of the transition matrix
(transition probability for continuous state spaces), is ergodic.



Sufficient conditions for ergodicity (cont)

The detailed balance condition implies

p(x2) =

∫

X

p(x2|x1)π(x1) dx1 = π(x2)

∫

X

p(x1|x2) dx1 = π(x2)

for continuous state space, i.e., if the unconditional distribution for x
at time t = 1 was π(x), then the unconditional distribution at time
t = 2 is also π(x)

This shows π(x) is an eigenvector of the transition probability
operator with eigenvalue 1; we will not prove convergence to this
distribution

Convergence to stationarity occurs in the infinite time limit for
continuous state spaces; for discrete state spaces, convergence can
occur in finite time: need Pnp(x0); then columns of Pn are nothing
but the stationary distribution π(x) and Pn+1 = PPn = Pn.



Autocorrelation of stationary Markov processes

Since E[xi−1ui ] = E[xi−1]E[ui ] = 0, for a Markov process that has
converged to stationarity the 1st-order autocorrelation function
(omitting the means and scale factors)

E[xTi xi−1] = E[(Axi−1 + Qui )
T xi−1]

= E[(Axi−1)
T xi−1] + E[(Qui )

T xi−1]

= E[(Axi−1)
T xi−1]

In the scalar case, with |a| < 1, for the k − th order autocorrelation
function (lag k), we have

E[xixi−k ] = ak−1
E[xi−k+1xi−k ] = akE[x2i−k ]

; i.e. the acf decays geometrically with k (time)

Note that for a stationary Markov process, lim
k→∞

acf (ti − ti−k) = 0.
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Stationary Markov process: mixing rate

For a stationary Markov process, we have lim
i→∞

p(xi ) = π(x).

The mixing rate of a Markov process is the rate at which the limit is
approached

The critical value of k at which the acf decays to approximately 0 is
related to the mixing time for the Markov process

Note that the decay of the autocorrelation function with lag depends
only on a, but the mixing time also depends on the noise/error term
ui since that also contributes to the eigenvalue spectrum of the
transition operator P

But, by estimating the autocorrelation function numerically, one can
obtain insight into the mixing rate/time
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Monte Carlo sampling: introduction

The simplest stochastic search algorithm is Monte Carlo (MC)

sampling
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Monte Carlo sampling: introduction

The simplest stochastic search algorithm is Monte Carlo (MC)

sampling

MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points
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Monte Carlo sampling: introduction

The simplest stochastic search algorithm is Monte Carlo (MC)

sampling

MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points

a) is achieved by sampling from a proposal distribution
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Monte Carlo sampling: introduction

The simplest stochastic search algorithm is Monte Carlo (MC)

sampling

MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points

a) is achieved by sampling from a proposal distribution

In the Metropolis algorithm (discussed further in 2nd half of term),
the proposal distribution is (typically) a function of the difference
between the current point and the previously sampled point, i.e.,
q(xi+1 − xi ); a typical form is
q(xi+1 − xi ) =

1√
2π

exp[− 1
2 (xi+1 − xi )

2].
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Monte Carlo sampling: introduction

The simplest stochastic search algorithm is Monte Carlo (MC)

sampling

MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points

a) is achieved by sampling from a proposal distribution

In the Metropolis algorithm (discussed further in 2nd half of term),
the proposal distribution is (typically) a function of the difference
between the current point and the previously sampled point, i.e.,
q(xi+1 − xi ); a typical form is
q(xi+1 − xi ) =

1√
2π

exp[− 1
2 (xi+1 − xi )

2].

The aim of MC is to sample, through correlated sequential draws,
from a stationary unconditional distribution π(x) that is otherwise
difficult for impossible to sample
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Metropolis-Hastings MC sampling

In Metropolis-Hastings sampling, the acceptance probability of a
move x1 → x2 is

α(x1, x2) = min

[

1,
π(x2)q(x1|x2)
π(x1)q(x2|x1)

]

(Metropolis sampling omits the factor q(x1|x2)
q(x2|x1)

, which = 1 for a

symmetric proposal distribution)

A common choice for π(x) is exp{− 1
kT

f (x)} where β = 1
kT

is an
adjustable parameter called the inverse temperature in analogy with
thermodynamics; thus obtain

min

[

1, exp{− 1

kT
[f (xi+1)− f (xi )]}

]
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Metropolis-Hastings MC sampling

In Metropolis-Hastings sampling, the acceptance probability of a
move x1 → x2 is

α(x1, x2) = min

[

1,
π(x2)q(x1|x2)
π(x1)q(x2|x1)

]

(Metropolis sampling omits the factor q(x1|x2)
q(x2|x1)

, which = 1 for a

symmetric proposal distribution)

A common choice for π(x) is exp{− 1
kT

f (x)} where β = 1
kT

is an
adjustable parameter called the inverse temperature in analogy with
thermodynamics; thus obtain

min

[

1, exp{− 1

kT
[f (xi+1)− f (xi )]}

]
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Metropolis-Hastings MC sampling

In Metropolis-Hastings sampling, the acceptance probability of a
move x1 → x2 is

α(x1, x2) = min

[

1,
π(x2)q(x1|x2)
π(x1)q(x2|x1)

]

(Metropolis sampling omits the factor q(x1|x2)
q(x2|x1)

, which = 1 for a

symmetric proposal distribution)

A common choice for π(x) is exp{− 1
kT

f (x)} where β = 1
kT

is an
adjustable parameter called the inverse temperature in analogy with
thermodynamics; thus obtain

min

[

1, exp{− 1

kT
[f (xi+1)− f (xi )]}

]

The M-H transition probability p(x2|x1) = q(x2|x1)α(x1, x2) satisfies
the detailed balance principle and hence the chain converges to
stationarity
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Metropolis-Hastings MC sampling satisfies detailed balance

Need to show π(x1)p(x2|x1) = π(x2)p(x1|x2)
We have p(x2|x1) = q(x2|x1)α(x1, x2)

π(x1)q(x2|x1)α(x1, x2) = min [π(x1)q(x2|x1), π(x2)q(x1|x2)]
= min [π(x2)q(x1|x2), π(x1)q(x2|x1)]
= π(x2)q(x1|x2)α(x2, x1)
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Monte Carlo sampling as an optimization algorithm

With fixed β, Metropolis MC chains converge to draws from the
stationary distribution π(x) = exp{−βf (x)}
Lower β drive the search towards lower values of f (x); higher β
increase the probability of transitions to higher values of f (x)

There is thus a finite probability of escaping local optima while
minimizing f (x) for MC search, unlike gradient-based optimization

Can be used on either discrete or continuous parameter spaces,
unlike gradient optimization

Test whether the system has reached equilibrium/stationarity at
given β by (i) (if running one chain) checking geometric decay of
autocorrelation function; (ii) (if running m multiple chains in
parallel) comparing unconditional variance σ2 of each parameter xi :
σ2
xi
= 1

n

∑

i (xi − x̄i )
2 within a chain to that between chains indexed

by j : n
m

(

x̄
j
i − 1

m

∑

j x̄
j
i

)2

. At stationarity, they should be

approximately the same for runs with large number of iterations n.



Monte Carlo sampling as an optimization algorithm

With fixed β, Metropolis MC chains converge to draws from the
stationary distribution π(x) = exp{−βf (x)}
Lower β drive the search towards lower values of f (x); higher β
increase the probability of transitions to higher values of f (x)

There is thus a finite probability of escaping local optima while
minimizing f (x) for MC search, unlike gradient-based optimization

Can be used on either discrete or continuous parameter spaces,
unlike gradient optimization

Test whether the system has reached equilibrium/stationarity at
given β by (i) (if running one chain) checking geometric decay of
autocorrelation function; (ii) (if running m multiple chains in
parallel) comparing unconditional variance σ2 of each parameter xi :
σ2
xi
= 1

n

∑

i (xi − x̄i )
2 within a chain to that between chains indexed

by j : n
m

(

x̄
j
i − 1

m

∑

j x̄
j
i

)2

. At stationarity, they should be

approximately the same for runs with large number of iterations n.

Latter method helps assess convergence to stationary distributions
with multiple peaks. Early on, within-chain variance will be smaller
than (scaled) between-chain variance because of high correlation
between successive steps
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Simulated annealing

Convergence to the stationary distribution can be extremely slow for
multimodal stationary distributions π(x) (equivalently, functions
f (x) with multiple local optima when using π(x) = exp{−βf (x)})
MC simulated annealing mimics the process of “slow cooling” that
nature uses to escape local optima in molecular energy functions

Simulated annealing either a) gradually increases β (lowers T ) over
a range [β2, β1]; or b) repeatedly cycles β between [β2, β1]

Equilibrate at each β

Can run multiple walkers in parallel from random initial guesses,
discarding those at each temperature that display low variance
(indicative of traps)

Do not artificially select walkers based on their values of the
objective function f (x), since the function may be rugged and we
only want to encourage thorough sampling of the landscape; walks
are already “biased” toward lower values of f

Assess convergence to global maximum / stationary distribution by
(i) number of times same local maxima are resampled, starting from
different initial conditions (different chains); or (ii) comparing
between- and within-chain variances (which should gradually align
with cooling)



Setting the proposal covariance matrix

The proposal distribution

p(xi+1 − xi )

is typically taken to be a multivariate normal distribution.

A general multivariate normal distribution can be written

p(x) = C exp

[

−1

2
(x − 〈x〉)TΣ−1(x − 〈x〉)

]

where Σ denotes the N × N covariance matrix, 〈x〉 denotes the
mean vector, x denotes the vector of random variables, and

C =
(

1
2π

)n/2 |Σ|− 1
2

For the Gaussian proposal distribution, 〈x〉 is taken to be the current
parameter vector
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Numerical methods for sampling from probability
distributions

Transformation methods for drawing from nonstandard pdf p(y) rely
on choosing function x = f (y) and drawing from p(x)

Since infinitesimal area element under each pdf must be conserved,
p(y)dy = p(x)dx or p(y) = p(x) dx

dy
; choice of p(x) specifies f (y)

Let p(x) = U(0, 1) (uniform distribution between 0 and 1); what is
f (y)?

Then p(y) = dx
dy
; and x = P(y), where P(y) is indefinite integral of

p(y)

Then y = P−1(x); draws from U(0, 1) can be converted to draws
from p(y) if P−1(x) can be computed
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Numerical methods for sampling from multivariate
probability distributions (cont)

For multivariate distributions p(y1, · · · , yn), let x = f (y) denote a
system of n nonlinear equations in the yi

Then p(y1, · · · , yn) = p(x1, · · · , xn) |J(y)|, where the determinant of
the Jacobian of the transformation (Jij =

∂xi
∂yj

) represents the scaling

factor for transformation of volume elements
dx1, · · · , dxn; dy1, · · · , dyn.
Simplfies when f is linear transformation
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Intro to stochastic algorithms
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Stochastic processes
Autoregressive and Markov processes

Monte Carlo Methods

Markov Chain Monte Carlo methods
Monte Carlo simulated annealing

Sampling from the multivariate Gaussian proposal
distribution

Two approaches can be used to draw from such a distribution
(transformation methods): (i) Cholesky decomposition, Σ = QQT

(Q is lower triangular for any symmetric Σ; possibly on homework),
with Xi+1 = Xi + Qui , where ui is a multivariate Gaussian “white
noise” process with unit variance, or (ii) eigenvector decomposition
Σ = OΣ̃OT , with X̃i+1 = X̃i + vi , where vi has variances equal to
the diagonal elemetns of Σ̃, followed by rotation back to the original
basis

Note that here, only a linear transformation of x is necessary since it
is possible to sample directly from univariate Gaussians
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Intro to stochastic algorithms
Review of classical probability

Stochastic processes
Autoregressive and Markov processes

Monte Carlo Methods

Markov Chain Monte Carlo methods
Monte Carlo simulated annealing

Rejection sampling

Choose a “comparison function” f (x) ≥ p(x)

Use transformation method to sample x from f (x) using uniform
sampling of x

Draw uniformly in interval [0, f (x)] and accept if below p(x), reject
if above p(x)

Above method is equivalent to sampling from p(x), although may
be computationally inefficient based on how close f (x) and p(x) are
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Intro to stochastic algorithms
Review of classical probability

Stochastic processes
Autoregressive and Markov processes

Monte Carlo Methods

Markov Chain Monte Carlo methods
Monte Carlo simulated annealing

Setting the proposal covariance matrix (cont)

The covariance Σ, and hence Q, can be set “adaptively”: let Sn
denote the sample covariance matrix over the last n steps; then let
Σnew = αΣold + (1− α)Sn

This allows the algorithm to “learn” the topography of the
landscape by favoring trial moves that step in the directions that
have been accepted previously

This method can be used to facilitate convergence; if the
autocorrelation function is decaying too slowly,

Note that this adaptation constitutes control of the evolution of the
stochastic difference equation (to accelerate the evolution of the
Kolmogorov system to a fixed point) by modulation of the noise term

CHE 597 - Quantum Control Engineering - Spring 2010 Stochastic processes and algorithms



Setting the annealing schedule

Compute the heat capacity to determine the ideal annealing
(cooling) schedule, based only on statistics at current temperature
T :

C (T ) =
d

dT
〈E 〉(T )

=
d

dT

[

∑

i Ei exp(−Ei/kT )
∑

i exp(
−Ei

kT
)

]

=
1

Z 2

[

1

T 2

∑

i

Ei exp(−Ei/kT )(
∑

i

exp(−Ei/kT ))−

−
∑

i

Ei exp(−Ei/kT )
d

dT

∑

i

exp(−Ei/kT )

]

=
1

T 2
[〈E 2〉 − 〈E 〉2]

If the heat capacity is sharply rising between successive
temperatures, reduce the annealing rate to avoid becoming trapped
in a local optimum.
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Stochastic processes: from discrete to continuous time

In the stochastic process lectures we studied dynamics in discrete
time:

xk+1 − xk = Axk + Dnk+1

where nk was called a N-variate white noise vector

Consider case with A = 0:

xk+1 − xk = Dnk+1;

the corresponding stochastic process x is called a Wiener process,
Brownian motion or a random walk

However for filtering we subsequently worked in continuous time, in
order to connect with our previous results on continuous time linear
dynamical systems; we wrote dx

dt
= Ax(t) + Dn(t) For A = 0,

dx

dt
= Dn(t)



Stochastic differential equations (sdes)

The Brownian motion in continuous time is x(t). Rigorously,
though, the continuous time white noise n(t) does not exist, since
x(t) can change position by a finite amount instantaneously and
hence is not differentiable

Stochastic differential equations are thus properly written
dx(t) = Dn(t)dt or more generally

dx(t) = Ax(t) dt + D n(t)dt = Ax(t) dt + D dω(t)

where dω(t) ∝
√
dt (the constant vector of proportionality is a

standard deviation vector)

The definition of dω(t) in terms of
√
dt rather than dt avoids the

problem of singularity in the derivative and avoids continuous time
white noise; since

√
dt is larger than dt, it is not infinitesimally small
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Stochastic differential equations (cont)

Practically, the important point is that when one computes
E[dω(t)dωT (t)], one obtains

E[dω(t)dωT (t)] = N(t) dt

where N(t) is a covariance matrix (previously called Q but now
because mixing estimation and control Q will be used in OCT cost
functional); note the dt arises from two factors of dω(t); thus the
variance of the increment of Brownian motion is infinitesimally
small, even though the increment itself may not be

We can continue to use our old notation of continuous time white
noise, as long as we recognize:

E[n(t)dt nT (t)dt] = N(t) dt;

since we always integrate over time for our solutions, we will replace
stochastic differential equations with ordinary differential equations
bearing this rule of stochastic calculus in mind
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Stochastic optimal control objectives

For stochastic dynamics, can no longer aim to drive the system to a
precise final state

Goal: to control moments of a deterministic cost functional
(cost-to-go): e.g. its (unconditional) mean (expectation value) or its
variance; we focus on mean:

min
u(t)

E

[

F (x(T )) +
1

2

∫ T

0

xT (t)Q(t)x(t) + uT (t)Rc(t)u(t) dt

]

The dynamical constraint for optimization is now a stochastic
differential equation

Optimal control must always be expressed in feedback form ū(x(t))
or ū(x̂(t))



Stochastic optimal control: with and without filtering

Two different frameworks:
1 Direct observation of the state - e.g. y = Cx observation law with

rank C ≥ N (here conditional covariance matrix Σ comes from
dynamical noise alone)

2 Noisy observation of the state - if linear observer, z = Cx + w

(example: quantum observations through 〈Θ〉 = Tr(ρ(t)Θ), where
ρ(t) is state)

Case 1: despite noisy dynamics, at any given time apply the optimal
ū(x(t)) since we can observe the state directly

Case 2: requires a method of filtering to obtain x̂(t) for the
feedback law and then combine control with filtering for ū(x̂(t))
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Stochastic HJB partial differential equation

Recall deterministic HJB equation:

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t),

∂J∗(x , t)

∂x(t)
, u(t), t)

Consider case with direct measurement of state at each time x(t)

Stochastic HJB equation has an additional term that is a function of
the process noise covariance matrix DNDT

For stochastic systems, need to do second order expansion: will find

second order term will contribute to ∂J∗(x,t)
∂t



Stochastic HJB pde (cont)

dJ(x , t)

dt
=

∂J(x , t)

∂t
+ L(x(t), u(t), t) +

∂J(x , t)

∂x
(f + Dn(t))+

+
1

2
(f + Dn(t))T

∂2J(x , t)

∂x2
(f + Dn(t))dt

E

[

∂J(x , t)

∂t

]

= −E

[

L(x(t), u(t), t) +
∂J(x , t)

∂x
(f + Dn(t))−

− 1

2
(f + Dn(t))T

∂2J(x , t)

∂x2
(f + Dn(t))

]

∂J(x , t)

∂t
= −

[

L(x(t), u(t), t) +
∂J(x , t)

∂x
f (x , u)

]

−

− 1

2
E[Tr[

∂2J(x , t)

∂x2
Dn(t)nT (t)DT ]dt]
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Stochastic HJB pde (cont)

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t), u(t),

∂J∗(x , t)

∂x
, t)−

− 1

2
E[Tr[

∂2J∗(x , t)

∂x2
Dn(t)nT (t)DT ]]dt

= −min
u(t)

H(x(t), u(t),
∂J∗(x , t)

∂x
, t)−

1

2
Tr[

∂2J∗(x , t)

∂x2
DE[n(t)nT (t)]DT ]dt

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t), u(t),

∂J∗(x , t)

∂x
, t)]−

1

2
Tr[

∂2J∗(x , t)

∂x2
DN(t)DT ]

since E[n(t)nT (t)]dt = N(t) for continuous-time white noise
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Linear-quadratic stochastic optimal control problems: no
filtering

As in deterministic case start with ansatz J(x , t) = 1
2x

T (t)S(t)x(t)

but add stochastic increment
∫ T

t
Tr[S(t ′)N(t ′)DT ] dt ′

Substitute into HJB equation:

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t), u(t),

∂J∗(x , t)

∂x
, t) + Tr[S(t)DN(t)DT ]

∂J∗(x , t)

∂t
= −1

2
xT (t)Qx(t)−

− 1

2
(R−1BTS(t)x(t))TR(R−1BTS(t)x(t))

− [S(t)x(t)]T (A− BR−1BTS(t))x(t) + Tr[S(t)DN(t)DT ]

subject to J∗(x(T ),T ) = 1
2x

T (T )S(T )x(T )



Further details on stochastic processes
From deterministic to stochastic control

Stochastic optimal control without filtering
Stochastic optimal control with filtering

Linear stochastic optimal control (without filtering)

Now derive Riccati equation:

1

2
[xT (t)Ṡ(t)x(t)] + Tr[S(t)DQ(t)DT ] =

− 1

2
xT (t)[ATS(t) + S(t)A + Q − S(t)BR−1BTS(t)]x(t)−

− Tr[S(t)DQ(t)DT ] + Tr[S(t)DN(t)DT ]

= −1

2
xT (t)[ATS(t) + S(t)A+ Q − S(t)BR−1BTS(t)]x(t)+

+ Tr[S(t)DN(t)DT ]

Ṡ(t) = −ATS(t)− S(t)A− Q + S(t)BR−1BTS(t)

Time-varying state-feedback control law:

ū(x(t)) = −R−1BTS(t)x(t)
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Filtrations

When the state must be estimated based on noisy measurements,
optimal decisions/controls must be based on the information set at
any given time t:

I(t0, t) = (z(t0, t), u(t0, t))

, i.e. conditional (conditioned) on all past observations; this is also
referred to as a filtration

Filters (e.g. Kalman filter) are used to translate the filtration
I(t0, t) into derived state and covariance estimate histories; these
histories constitute the derived information set
ID(t0, t) = (x̂(t0, t),Σ(t0, t)) which is used by the controller (note
this is dependent on the type of estimator/filter used); we will use
the notations I and ID interchangeably

For a Markovian stochastic process, I(t0, t) = I(t) = (x̂(t),Σ(t))
since the future evolution depends explicitly only on the the current
state and covariance matrix



Linear stochastic optimal control problems with filtering

Linear stochastic control problem analogous to LQR, with process as
well as measurement uncertainty, is called linear quadratic gaussian
regulator (LQG regulator)

Write expected cost function given incomplete information set
(filtration):

E

[

xT (T )S(T )x(T ) +

∫ T

0

xT (t)Q(t)x(t) + uT (t)R(t)u(t) dt

]

=

= E

{

E
[

xT (T )S(T )x(T )|I(t)
]

+

+

∫ T

0

E
[

xT (t)Q(t)x(t) + uT (t)R(t)u(t)|I(t)
]

dt

}

= E

{

Tr[S(T )x(T )xT (T )|I(T )] +

∫ T

0

Tr[Q(t)x(t)xT (t)|I(t)]+

Tr[R(t)u(t)uT (t)] dt

}
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Linear stochastic optimal control problems with filtering

(cont)

Note that E[x(t)xT (t)|I(t)] appears in the cost functional; rewrite
this in terms of

Σ = E[(x(t)− x̂(t))(x(t) − x̂(t))T |I(t)]
= E[x(t)xT (t)|I(t)] − 2E[x(t)x̂T (t)|I(t)] + E[x̂(t)x̂(t)|I(t)])
= E[x(t)xT (t)|I(t)] − E[x̂(t)x̂(t)|I(t)]

So E[x(t)xT (t)|I(t)] = Σ(t) + x̂(t)x̂(t)

CHE 597 Stochastic optimal control



Further details on stochastic processes
From deterministic to stochastic control

Stochastic optimal control without filtering
Stochastic optimal control with filtering

Linear stochastic optimal control with filtering

Thus

2E[J] = E

{

Tr[S(T )x̂(T )x̂T (T )] + Tr[S(T )Σ(T )]+

+

∫ T

0

Tr[Q(t)x̂(t)x̂T (t)] + Tr[R(t)u(t)uT (t)] + Tr[Q(t)Σ(t)] dt

}

= E

{

Tr[S(T )x̂(T )x̂T (T )] +

∫ T

0

Tr[Q(t)x̂(t)x̂T (t)]+

Tr[R(t)u(t)uT (t)] dt

}

+ E

{

Tr[S(T )Σ(T )] +

∫ T

0

Tr[Q(t)Σ(t)] dt

}

= JCE + JS

JCE is called “certainty-equivalent” cost functional; note it is same

as stochastic cost functional with but with x replaced by x̂

For the control systems we are studying, control does not affect JS -
can formulate optimization problem based only on minimization of
JCE (however, in certain applications Σ(t) can be controlled)
Covariance matrix Σ includes contributions from both estimation
error and noisy dynamics
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Certainty-equivalence principle for linear Gaussian systems

Recall dynamical constraint for deterministic LQR controller was

dx(t)

dt
= Ax(t) + Bu(t),

whereas dynamical constraint for stochastic system with direct state
observation was

dx(t)

dt
= Ax(t) + Bu(t) + Dn(t)

Dynamical constraint for LQG controller is

dx̂(t)

dt
= Ax̂(t) + Bu(t) + Ke(t)(z(t) − C (t)x̂(t));

control problem is min
u(t)

JCE subject to this constraint

Note that in expectation, the term Ke(t)(z(t) − C (t)x̂(t)) is
distributed normally with mean zero, just like Dn(t) in stochastic
control with direct state observation; thus Riccati equation is
identical and doesn’t depend on x̂(t) or Σ(t)
The feedback controller Riccati equation is (propagated backward in
time from S(T )):

dS(t)

dt
= −ATS − SA− Q + S(t)BKc(t)
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Certainty-equivalence principle for linear Gaussian systems

(cont)

Certainty-equivalence means that the control problem can be solved
as if the state x̂(t) were directly observed

The optimal feedback control is ū(x̂(t)) = R−1BTS(t)x̂(t)

The state estimate x̂(t) is continuously updated through the
Kalman filter Riccati equation

Implementation steps:
1 Solve controller Riccati equation by backwards propagation from

S(T ) (appears in cost functional)
2 Propagate dx̂(t)

dt
= Ax̂(t) + Bu(x̂(t)) + Ke(t)(z(t)− C(t)x̂(t))

forward from x̂(0), simultaneously with propagation of filter Riccati
equation forward from Σ(0)
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Solving nonlinear stochastic optimal control problems with
noisy measurements

HJB solution method presented above assumes state can be
observed directly without error; this allows us to replace
E[J(x(t), t)] with J(x(t), t) and similarly E[x(t)] with its known
values at all times

For nonlinear systems with measurement error,
E[J(x(T ),T )] = E[F (x(T ))] not known with certainty and depends
on measurements made over all time [0,T ]

Thus filter, which is integrated forward in time, is coupled, and both
cannot be solved simultaneously

For linear systems, decoupling of estimator from controller occurs;
for nonlinear systems, generally not possible and error is incurred by
assuming information set up to time t is sufficiently similar to
information set over all time

Filter determines the filtration forward in time, while the controller
(HJB solution) determines the optimal state-dependent feedback
laws backward in time



Solving nonlinear stochastic optimal control problems with
noisy measurements

Decoupling for linear systems occurs because Σ̇(t) Riccati equation
is unaffected by control u(t); thus controller Riccati equation can be
solved first, backwards from S(T ), while filter Ricatti equation
(covariance update) can be solved separately; note Σ(t) is required

for integration of dx̂(t)
dt

but not vice versa

LQG derivation relies on equivalence between dynamical constraint
including filter and linear Markovian sde (like that used in LQR
derivation); in expectation the noise (innovation) term does not
appear hence optimal ū(x̂(t)) law is identical to that for LQR and
controller gain can be computed offline

For nonlinear systems u(t) can affect Σ(t)

Even if we ignore this we still need to solve HJB equation



Neighboring optimal (perturbative) feedback control

We have seen that solving for optimal feedback controls for
nonlinear (stochastic) systems is difficult; require HJB pde solution
for field of extremals; but these are most common circumstance

Neighboring optimal methods are based on linearization of system
around deterministic trajectory - can apply linear estimation and
control methodology locally
Preliminary steps:

1 Solve for optimal controls in absence of measurements or noise for
nonlinear system (need not be expressed in feedback form; use PMP)

2 Now linearize nonlinear system around the reference trajectory:

A(t) =
∂f

∂x
[x̂r (t), ur (t), t],

B(t) =
∂f

∂u
[x̂r (t), ur (t), t]

Note this means to substitute the optimal state and control
trajectories x̂r (t), ur (t) in after analytic differentiations of nonlinear
vector functions f ; although the resulting expressions A(t),B(t) will
not be analytic, they can be used in numerical integration of the
corresponding Riccati equations

3 Define deviation variables
∆x̂(t) = x̂r (t)− x̂(t), ∆u(t) = ur (t)− u(t)



Neighboring optimal feedback control methods (cont)

Filtering and control steps:
1 Solve the corresponding linear feedback control problem by

integrating Riccati equations for controller and filter and updating
deviation ∆x̂(t) based on observations. Cost functional:

F (∆x̂(T )) +
1

2

∫ T

0

∆x̂
T (t)Q∆x̂(t) + ∆u

T (t)R∆u(t) dt

2 Optimization of this cost functional subject to the linearized
dynamical constraint

∆ẋ(t) = A(t)∆x̂(t) + B(t)∆u(t) + Ke(t)[z(t)− C(t)∆x̂(t)]

provides the Riccati equation above for LQG
3 Solve the corresponding linear filtering problem by integrating the

filter Riccati equation:

Σ̇(t) = A(t)Σ(t) + Σ(t)AT (t) + DQD
T − Σ(t)CT

R
−1(t)CΣ(t)

where the covariance matrix is now defined by
Σ(t) = E[(∆x(t) −∆x̂(t))(∆x(t)−∆x̂(t))T ]

4 Update the state estimates in real-time in response to observations
z(t) according to above dynamical equation (here we have assumed
a linear observation law); at each time apply the feedback control
∆u(∆x̂(t)) = −R−1BTS(t)∆x̂(t)



Asymptotic stability of the Kalman filter

Recall the quadratic cost used for derivation of the Kalman filter was
J = 1

2 (z(t)− Cx̂(t))TR−1(z(t)− Cx̂(t))

The appropriate Lyapunov function for assessment of stability of the
Kalman filter is J(t) = 1

2 (x(t)− x̂(t))TΣ−1(t)(x(t) − x̂(t))

The corresponding algebraic Riccati equation can be derived from
the Riccati equation for Σ: (simply left/right multiply by Σ−1):

Σ̇−1(t) = Σ−1(t)A+ ATΣ−1(t) + Σ−1(t)DNDTΣ−1(t)− CTR−1C

Σ−1(t) plays the role of S(t) in the feedback control Riccati
equation

Note use of Σ−1 in the Lyapunov function parallels use of R−1 in
objective function
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Asymptotic stability of the Kalman filter (cont)

Note this Riccati equation is a function of A,C ; the condition for
stability is observability of the system

Letting ǫ(t) ≡ x(t)− x̂(t), the time-derivative of the Lyapunov
function is

J̇(ǫ(t)) = −ǫ(t)T [Σ−1(0)DNDTΣ−1(0) + CTR−1C ]ǫ(t),

which is negative definite

Thus the estimation error decays to zero as the time over which the
measurements are made approaches infinity.

By extending our results on stability of controllable linear feedback
controllers and observable linear filters, the deviation of x(t) and
x(t)− x̂(t) from zero decay asymptotically for the LQG

Since estimation dynamics governed by d
dt
ǫ(t) = (A−Ke(∞)C )ǫ (in

steady-state case, omitting noise terms; check), stability can be
checked by looking at eigenvalues of A− Ke(∞)C
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Equilibrium points of (linearized) dynamical systems

Static equilbria: x(t) does not change with time; i.e., dx
dt

= 0

For constant control u∗, the equilibrium point is where x∗ = A−1Bu∗

More generally can have quasistatic equilibria where we subdivide

x(t) into x1(t) and x2(t), and only dx1(t)
dt

= 0 at the equilibrium; this
occurs if A is singular

Note that in general, due to insensitivity of the location of the origin,
we define the origin to be the zero state vector in dx

dt
= Ax +Bu, but

can generalize to x → x + v ; simply shifts the equilibrium point by v


	20140725103518658
	Merged

