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CHE 658 / IE XXX
Advanced Process Control and Optimization
Spring 2011
(in collaboration with Honeywell Process Solutions)

Topics in linear and nonlinear system theory applied to automatic control of processes. Subjects

include stabllity analyses, phase plane methods, statistical disturbances, sampled systems,
theoretical and experimental determination of process dynamics, optimization, and computer
control,

3.000 Credit hours

Levels: Graduate, Professional, Undergraduate
Schedule Types: Lecture

Offered By: School of Chemical Engineering
Departments: Chemical Engineering, Industrial Engineering

Course Policy/Grading: No exams; 5 problem sets (60 % of grade) + software term
project (40% of grade)

Textbooks: Seborg, Process Dynamics and Control, 3" ed, (required); Stengel,
Optimal Control and Estimation (recommended)

Topics covered:

Matrix methods
SVD, Gramians

Optimal contro] theory

Nonlinear control methods and applications

Linear multivariable control

State space analysis
Setpts and local linearization
Stahility analysis: Lyapunov eqgns
Linear quadratic regulator (LQR)
MIMO canirol systems
Kalman gain; closed loop stabllity

PID control within the LQR framework




Choosing cost function weightsfpole placement

Controflabllity, observability, stabilizability - on stabilizability and pole
placement note difference In interpretation for transfer fn vs closed loop fundamental
mafrix

Multivariable frequency domaln analysis + transfer fns; modes of motion
connection to lyapunov theory

PID pairing: input-output pairs in MIMO PID systems; choose simplest pairings that allow
appl of SISO methods to MIMO

Controllar tuning:
PID optimal tuning

Gain scheduling (state space model-based; extended linearization of nonlinear sys
provides parameteric linear system / then apply pole placement - provide desired closed
loop poles)

initial gain diagonal

Applications of LP to tuning (generally are nonlinear input/output constraints)

Numerical methods for optimization:

Steepest Descent, Conjugate Gradient, Quasi-Newton
Monte Carlo algs (MCSA)

add: constrained opt (LP)

Two-pt boundary value probs: shooting, etc

Numerical methods for ades

Methods for state estimation

Properties of estimators

Nonlinear{/partial) least squares theory - connect to inferential dev, profit sensar/profit
toolkits

Kalman filtering
state, parameter estimation
stability of the Kalman filter

Maximum likelihood estimation
MLE sxamples
Algorithms for ML estimation

Stochastic process control

Prob review
Autocorrelation fns

Background on stochastic processes
Stochastic control without filtering




Linear stochastic control without filtering
Stochastic controt with filtering
linear

Linear Quadratic Gaussian regulator

Dynamic Programming and RTO {HJB ean)

Numerical methods for DP

Model! predictive control

Model identification and pararneter estimation
step tests
freq domain vs state space reps
model compactness
Likellhood-based vs least-squares techniques in model id

Model uncertainty; id of true ind variables, experimental design,
model quality analysis, validating data independence, data slicing

Abplications:

Linearization - fan pitch controls, azeotropes, high-purity distillation

cascades: multiple input control variables (feedback loops) for single output; more
responsive {o disturbances; combine feedback and feedforward; when to break cascades

plant testing, exptl design ve model identification
open/closed loop testing

prebuild sims of distillation column

controlier build, commissioning
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Outline

9 Reachable sets and controllability of dynamical systems: Intro

© Controllability: definitions
@ Controllability of linear systems
@ Controllability of nonlinear systems

© Observability

© Controllability of bilinear systems
® State controllability
@ Controllability of bilinear systems on compact Lie groups
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Reachable sets and controllability of dynamical systems: Intro

Outline

0 Reachable sets and controllability of dynamical systems: Intro

CHE 597 Controllability and observability



Reachable sets and controllability of dynamical systems: Intro

Introduction: energy eigenstate controllability of molecular
systems

@ We saw that the matrix elements of the dipole moment operator,
(i|p]j) determine the selection rules for light-induced transitions in
atoms and molecules

@ However, we also saw that direct (one photon) transitions between
energy levels are not the only route for “state-to-state” transitions

@ What are the analog of “selection rules” for multiphoton transitions?

@ More generally, what determines if a initial wavefunction |¢(0)) can
be driven to any arbitrary final state |¢)) (at time T)?

@ Subject is called controllability

CHE 597 Controllability and observability



Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

Outline

© Controllability: definitions
@ Controllability of linear systems
@ Controllability of nonlinear systems
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Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

Reachable set

Reachable set

The reachable set R(xo, T) at time T is the set of states x(T) that can
be reached from xp (the initial state) by an admissible control

@ The complete reachable set R(xo) = Jo R(x0, T)
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Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

Controllability

Full controllability

A control system is (fully) controllable (at time T) if the reachable set
R(xo, T) is equal to the state manifold.

@ For unitary propagator (operator) quantum control, full
controllability means R(wo, T) = U(N)

@ For pure state control, full controllability means R(Up, T) = Sy,

@ Controllability theory does not rest on use of any particular cost
functional, but sufficient conditions for controllability are sometimes
conveniently derived using Lagrange functionals (with final state
specified)
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Formal solution to general linear systems

@ Obtain the formal solution to the linear vector differential equation
& — Ax(t) + Bu(t) in two steps:
@ Solve the homogeneous differential equation 2 = Ax(t); this
provides a reference frame moving with x(t) in absence of control
© Rotate x(t) to this reference frame; this produces a differential
equation for y(t) = U™!(t)x(t); solve it by direct integration and
then rotate back to the original reference frame
@ We know the solution to the homogeneous equation is
x(t) = exp(At)x(0) (matrix exponential) and the time evolution
propagator U(t) = exp(At) satisfies 24 = AU(t)
@ For the second step, use U~1(t) = —U~!(t)A; hence
U= (t)x(t) = —U~Y(t)Ax(t)

d , _ _ dx .
(U Ox() = U5+ Uex(0) =

UL (t)[Ax(t) + Bu(t)] — U7L(t)Ax(t)



Formal solution to general linear systems: Laplace

transform

@ Consider solution of the general first-order scalar ode with constant

coefficients: df/(tt) = ax(t) + bu(t) with general, unknown control
function u(t) (not necc optimal for quadratic cost), via Laplace

transforms

o L1%8] = Llax(t) + bu(t)]

@ Generalize to system of first-order linear odes

(sl — A)x(s) = x(0) + Bu(s)
x(s) = (sl — A [x(0) + Bu(s)]

@ Inverse LT gives
x(T) = U(T)x(0) + U(T) / U 0)Bu(t) dt

(compare L7[x(s)] = £7! [M} for scalar x)

Ss—a



Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

Full controllability of time-invariant linear systems

@ For linear control systems, it is a simple matter to assess full (state)
controllability; find conditions that guarantee that x(T) can be
driven to 0 (since transferring system from any initial state to any
final state may be put in this form by placing origin of state vector
at desired target state)

T
x(T) =0=exp(AT)xo +/ exp(A(T — t'))Bu(t') dt’
0

-
= exp(AT) x(O)Jr/0 exp(—At")Bu(t") dt’

(recall u(t) for linear systems is m-component vector of controls, B
is N X m matrix)

@ According to the Cayley-Hamilton theorem, instead of Taylor
expanding the matrix exponentials, we may represent them as matrix
polynomials with at most N — 1 terms:

exp(—At) = ao(t)In + a1(t)A + ar(t)A% + - - + an_1(t) AV



Controllability: definitions Controllability of Imear systems
Controllability of nonlinear syste;

The (time-invariant) controllability matrix

@ So we have (left multiplying by exp(—AT))

T T
*X(O)zB/ ao(t')u(t’) dt’ +AB/ a(t)u(t) dt' + -+

ANlB/ / ay_1u(t’) dt’
@ Can write as

[B.AB, -, AVIB] ([ ao(t')u(t') dt', -, [ an-a(t')u(t') dt']"
(note latter is Nm-dim vector since u is m-dim)

@ The N x Nm controllability matrix is [B, AB,--- ,AN=1B]. If it is
nonsingular (has N linearly independent rows/columns; or N nonzero
singular values; or rank is V), the system is fully controllable since
we can solve for u(t) from this system of equations and
independently drive all N elements of x(T) to 0

@ Check rank condition by singular value decomposition of
controllability matrix (matrix is square only for one control)
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Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

Rank condition: numerical methods

Singular value decomposition

Recall the definition of singular value decomposition: for an N x m
matrix A, the singular value decomposition is

A=USVT,

where U is an N X m orthogonal matrix, S is a m x m diagonal matrix,
and V is a m x m orthogonal matrix. The singular values of A are the
diagonal elements s, -, sm; s; = ++/\;, where \; are the eigenvalues of
B=ATA.

@ Columns of U (left singular vectors of A) corresponding to s; # 0 are
orthonormal basis vectors for the vector space spanned by the
columns of A (range of A)

@ This method for constructing an orthonormal basis is much more
numerically stable than standard Gram-Schmidt orthogonalization

CHE 597 Controllability and observability



Controllability of time-invariant linear systems

@ Use a quadratic Lagrange cost L(u(t)) = u” (t)u(t) with a terminal
state constraint xr
@ Recall the form of the optimal control for the temperature control
problem; generalize to vector linear system: u(t) = —BT ¢(t)
@ Similarly generalize the costate differential equations:
d
= —ATo(1)
@ Generalize ¢(t) solution as ¢(t) = exp(AT(T — t))é(T)
@ Then the state system of odes becomes:
& — Ax(t) — BBT exp(AT(T — t))p(T) or
& — Ax(t) — BBTUT(T,t)¢(T)




Controllability of time-invariant linear systems

@ Use the explicit solution for the linear system of odes above:

x(t) = U(t)x(0) — U(t) (/t UY(tBBTUT(T,t) dt’) o(T)
0
= U(t)x(0) — (/t U(t,t")BBT U (t,t) dt’) o(T);
0
solve for ¢(T) given known x(T):
- -1
¢(T) = (/ U(T,t)BBTUT(T,t) dt’) (U(T)x(0) — x¢)
Jo

@ Then substituting ¢(T), obtain
u(t) = BTUT(t,t)G~}(T)[x — U(T)x(0)]; condition for full
controllability at time T is that the N x N controllability Gramian

.
G(T):/O U(T,tBBTUT(T,t') dt’

is nonsingular



Local controllability

@ For (time-varying) nonlinear systems (i.e., 2 = F(x, u)), there are

no general rules for assessing full (state) controllability

@ Must generally limit to local controllability, i.e., whether there exists
a control perturbation du(t) that can achieve any arbitrary small
perturbation from a nominal (reference) trajectory

@ Denoting the reference trajectory by x,(t) and the perturbed
trajectory by x(t), we have

x(T)=x(T)+ U(T)ox(0) + ./OT U(T,t"YB(t)du(t') dt’

where B(t') denotes the N x m Jacobian matrix 8(3(Ft) and

U(rT) = Texp[foT 82Ft) dt] is N x N (both partial Jacobians

evaluated at x = 0,u = 0)

@ Local controllability is equivalent to the ability to drive all
components of x(T) to 0 by appropriate choice of du(t) over the
interval 0, T



Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

controllability (cont'd)

@ A sufficient condition for local controllability is that the N x N
controllability Gramian matrix

G(T) = /OT U(T,t)B(t)BT(tYUT(T,t") dt’

is nonsingular

@ This follows because the control perturbation du(t) necessary to
drive x(T) to zero is
Su(t) = BT(t)UT(T,t)G~YT)[—x(T) — U(T)éx(0)] (note can
set 6x(0) = 0 if interested in control perturbations alone)

@ Note that for linear time-variant systems, the controllability
condition is derived as above but setting x,(t) =0

@ However, for bilinear systems (a particular class of nonlinear
systems), full controllability criteria exist

CHE 597 Controllability and observability



Controllability: definitions Controllability of linear systems
Controllability of nonlinear systems

Controllability versus optimality of controls

@ Optimal control theory seeks to maximize a cost function that may
contain a contribution from the state as well as the control

@ For Bolza and Mayer cost functionals, optimality of the control does
not imply that a desired state is reachable.

@ For Lagrange functionals, generally check controllability/reachability
before imposing a terminal state constraint.

@ If the system is uncontrollable, numerical algorithms may never
achieve perfect objective function fidelity!

CHE 597 Controllability and observability



Observability

Outline

© Observability
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Observability of time-variant linear systems

o Consider the time-variant linear system 2 = A(t)x(t) in the
absence of control, with formal solution x(t) = U(t)xo

@ Consider a linear observer y(t) = C(t)x(t) = C(t)U(t)xo, where
C(t)ismx N

@ The aim is to solve for xo by making m observations y(t) at each
time ¢t

@ To obtain a sufficient condition for this solution to exist, left-multiply
the observation equation by U'(t)C7 (t) and integrate over all time:

/OT UT()CT(t)y(t) dt = /OT UT()CT ()R U(E) dt %

o Let H(T fo UT(t)CT(t)C(t)U(t) dt; note it isan N x N
Gramlan matrlx Now solve for xg:

o = H‘l(T)/O UT(OCT (t)y(¢) dt

¢

H is called the observability Gramian matrix.



Observability of time-invariant linear systems: rank

condition

@ Observability: Does there exist an observation sequence y(t),
0 <t < T, such that we can identify any x(0)? (note duality
between controls (inputs) and observations (outputs))

X

o Consider the time-variant linear system % = Ax(t) in the absence of

control with formal solution x(t) = U(t)xo, with Bolza cost

f x(t) dt + 3xT(T)S(T)x(T), @ >0and QT = Q
(the reason for notation S(T) for endpoint weighting matrix will
become clear below)

dx

— =A

a

do .
_ = — — A
i ¢

@ Solve formally for ¢(t):

6(t) = exp[AT(T—8)]6(T)+ /t exp[AT (T—)]Q exp[AT #]x(1) ¥’

$(0) = exp[AT T]e(T) —i—/o exp[AT '] Q exp[At']x(0) dt’



Observability

Observability of time-invariant linear systems:
condition

dx
Z_A
at =~
y =/ Qx
= v/ Qexp(At)xo

-
#(0) = exp[AT T]o(T) + /0 exp[AT t']Q exp[At']x(0) dt’

-1

T
x(0) = l/o exp[ATt'| Q exp[At'] dt’] [6(0) — exp[AT T]o( 7))
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Observability

Observability of time-invariant linear systems: rank
condition (cont)

@ Compare BR™1BT )\ for Bu: now \/GT\/ﬁx; express in terms of
T
y=vV0x: VQ (VQx)

@ m-component vector y is nothing but analog (dual) of control vector

u
% VQTy+ATs

@ Formally,
T T
6(0) — exp[ATTH(T) = / eplATHVQ y(t) dt
T
:/ exp[ATt]\/aT\/ax(t) dt,
0

although actual reconstruction of x(0) requires measurement
outcomes y(t); ¢ formulation useful only for observability assessment

CHE 597 Controllability and observability



Observability of time-invariant linear systems: rank

condition (cont)
@ Setting ¢(T) =0,

T

T
<zﬁ(0)=CT/O ao(t)y(t') dt' + A CT/ a(t)y(t) dt' + -+

0

T T
AT)""IC/ / an_1y(t") dt’
0 0

@ Since for linear systems there is a one-to-one correspondence
between ¢(0) and x(0) (see above), if this equation can be solved
for y(t) the system is observable

@ Can write as

[CTvATCTv"' a(AT)N_lCT][foT ao(t’)y(t’) dt’f“ ’fOT an— 1( ) ( )dtl]

(note latter is Nm-dim vector since y is m-dim)

@ The N x Nm observability matrixis [CT,ATCT, ... (AT)N-1CT].
If it is nonsingular (has N linearly independent rows/columns; or N
nonzero singular values; or rank is V), the system is fully
controllable since we can solve for y(t) from this system of
equations and independently identify all elements of x(0)

@ Check rank condition by singular value decomposition of
observability matrix (matrix is square only for one-component



State controllability
Controllability of bilinear systems on compact Li
Controllability of bilinear systems

Outline

© Controllability of bilinear systems
® State controllability
@ Controllability of bilinear systems on compact Lie groups
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State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Controllability of bilinear systems

@ Consider the general bilinear control system:

dx(t)
dt

x(t)

A+ Z B;u;(t)

CHE 597 Controllability and observability



State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Controllability of bilinear systems

@ Consider the general bilinear control system:

d’;(tt) _ A+ZBiUi(t) x(t)

@ Note we assume the possibility of multiple controls (e.g.,
components of the electric or magnetic field) with associated
Hamiltonians B;, 1 <i<m

CHE 597 Controllability and observability



State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Controllability of bilinear systems

@ Consider the general bilinear control system:

dx(t)
dt

= [A+> Biui(t)| x(t)

@ Note we assume the possibility of multiple controls (e.g.,
components of the electric or magnetic field) with associated
Hamiltonians B;, 1 <i<m

@ Control consists of applying each control Hamiltonian B; with
amplitude u;(t), generally in unison, at each time interval dt

CHE 597 Controllability and observability



State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Controllability of bilinear systems

@ Consider the general bilinear control system:

dx(t)
dt

= [A+> Biui(t)| x(t)

@ Note we assume the possibility of multiple controls (e.g.,
components of the electric or magnetic field) with associated
Hamiltonians B;, 1 <i<m

@ Control consists of applying each control Hamiltonian B; with
amplitude u;(t), generally in unison, at each time interval dt

@ The important feature of bilinear control systems that makes their
controllability easier to assess than general nonlinear control systems
is the fact that the solution to the ode can be formally expressed as
a matrix exponential

CHE 597 Controllability and observability



Controllability of bilinear systems

Definition

A Lie algebra L is a vector space over a field F (here, real or complex
numbers) together with a bilinear operation [-,-] : £ x £ — L called a Lie
bracket that satisfies the following conditions:
Q Bilinearity: [x + z,y] = [x,y] + [z,y], [x,y + 2] = [x,y] + [x, z];
afx,y] = [ax, y] = [x, ay]
Q@ Skew-symmetry: [x,y] = —[y, x]
Q Jacobi identity: [x, [y, z]] = —([z, [x, ¥]] + [y, [z, x]])

@ We will be concerned with Lie algebras where x,y are N x N
matrices A, B and the Lie bracket is the commutator
[A, B] = AB — BA, with the field 7 = R. The matrices we are

concerned with are skew-Hermitian, i.e., At = —A. The Lie algebra
u(N) is the set of skew-Hermitian matrices together with the
commutator.

@ In this case, the matrix exponential exp(A) is an element of the
associated Lie group (see hw for further definitions).

@ Dynamical propagators in quantum mechanics are members of the
unitary Lie group U(N)



Application of BCH theorem

@ The application of a single control Hamiltonian B; (or A+ Y. u;B;)
with amplitude u; for time At produces time evolution
exp (—£ui(t)B;At) (for qc systems)

@ This corresponds to (we call this) “motion in direction iB;; use
notation iB; — B;

@ Can we only move system along directions corresponding to sums
A+ Zi u;B;?

@ No - non-commuting Hamiltonians produce new directions:

exp(BjAt) exp(BjAt) = exp{ BiAt + BjAt+
1
[BiAt, BiAt] + E[B,-At, [BiAt, BiAt]]+
1
a[B,-At, [BiAt, [BiAt, BiAt]] + - - - }

@ Each commutator [B;, [B;,_,, B;,]] - - is a new direction

@ For arbitrarily shaped controls, the system may be driven in any of
these directions by appropriate choice of u;(t) (we will prove this as
a homework problem)



State controllability
Controllability of bilinear systems on

Controllability of bilinear systems

Repeated Lie brackets

Definition
The Lie algebra generated by {A,--- ,A,}, where A; € g, a Lie algebra,

is the subalgebra of g spanned by {A;,---,A,} and all their repeated
commutators. We denote this Lie algebra by {A;,- -, Ap}ia.

@ The linear span of the (possibly complex) matrices {A, -, Ap} is
the set of all matrices Z,. c;A; with coefficients ¢; € R.

If Ay,---, A, are control Hamiltonians (i.e., for finite-dimensional
quantum control systems, g = u(N) or su(N)), the generated Lie algebra
is called the dynamical Lie algebra L of the control system.

Definition
A repeated Lie bracket is a Lie bracket of the form [A,, - -, [A2, A1]].
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State controllability
Controllability of bilinear systems o

Controllability of bilinear systems

Lie algebra rank condition

Dynamical Lie algebra

The dynamical Lie algebra £ = su(N) (£ = u(N)) (i.e., the system is
fully operator controllable; if the rank of the Lie algebra spanned by
{A1,---,A,} and all their repeated commutators is N? — 1 (N?).

The proof follows from application of the BCH theorem, since sequential
application of the control Hamiltonians generates new directions in the
Lie algebra
@ Note this implies that there exists a T and controls u;(t) such that
U(T) = U for any U € U(N); however, T can be very large and
unknown.
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State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Lie algebra rank condition: numerical methods

@ To numerically check the Lie algebra rank condition:

© Construct elements in the dynamical Lie algebra by taking
commutators [Ho, Xi], [u, Xi] for each Xj, with the initial set
{Xi} = {Ho, u}

© For each element (matrix) X; in the current set, construct a column
vector whose elements are the linearly independent elements of the
matrix

© Concatenate these column vectors to obtain an N? x M matrix A

@ Do an SVD on A and obtain the rank of the range of A; if this is
unchanged from the last iteration, this is the rank of the dynamical
Lie algebra

CHE 597 Controllability and observability



State controllability
Controllability of bilinear systems on compact Lie groups

Controllability of bilinear systems

Density matrix controllability

Unitarily equivalent states

Two density matrices (states) p1, p2 are said to be unitarily equivalent if
we can write pp = Up UT for some unitary matrix U. Of course, this is
the same as saying that p;, p» share the same eigenvalue spectrum.

A quantum control system is said to be density matrix controllable if any
density matrix py is reachable from the all unitarily equivalent density
matrices pi.
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State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Conditions for density matrix controllability

@ Controllability of two unitarily equivalent states (states with a given
eigenvalue spectrum) requires that the orbit {Up; UT|U € exp(L)} is
equal to the largest possible such set, {Up; UT|U € exp(M(N))}.

@ To test for density matrix controllability, we need a simple
(numerically testable) condition for this

@ Since all possible evolutions of py under the action of arise from the
commutators (recall the von Neumann equation), a quantum system
is pure state controllable if

dim[ipg, £] = dim[ipo, u(N)]

@ The rhs of this equation it the dimension of the state manifold
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State controllability
Controllability of bilinear systems on compact Lie groups
Controllability of bilinear systems

Pure state controllability

@ Recall that dim Sy, =2N —1
@ A quantum system is pure state controllable if

dim[ipg, L] = 2N —1

@ Note for molecular control problems, the required condition is even
weaker because only observable expectation values must be
controlled

@ Because pure state controllability is generally satisfied and due to
the dependence of observable control on the nature of the
observable, we will not consider the latter here
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State controllability

Controllability of bilinear systems on compact Lie groups

Controllability of bilinear systems

@ Because U(N) is compact, quantum system controllability has
additional favorable features beyond that of general bilinear systems

@ Specifically: for a controllable system any propagator can be written
U(T) = exp(—+ Hi,ty) - - - exp(— 3 Hj, t1) with finite n, for some set
of H; in the dynamical Lie algebra

@ This means that sequential independent application of control
Hamiltonians can achieve any propagator or state (previously we
considered arbitrary superpositions of Hamiltonians)

@ There are important implications for quantum computing
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Introduction to numerical optimization algorithms

t-based vs cost function-based optimization algorithms
adient

Outline

© Introduction to numerical optimization algorithms
@ Gradient-based vs cost function-based optimization algorithms
@ Conjugate gradient
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Optimization strategies for Bolza and Mayer costs

@ For numerical solutions based on the gradient of the objective
function J with respect to the control, need to integrate state,
costate or both sets of differential equations with an implicit
expression for the field £(¢)(t), ¢(t)) at each step.

@ In the absence of additional symmetries, need to integrate both
state and costate equations simultaneously.

@ With the additional symmetries of Hermiticity of the matrices A, B
and bilinearity of the control system, we can reduce the numerical
problem to just integration of the state equations in terms of ¢(T).

@ Recall the form of the gradient of the PMP-Hamiltonian with
respect to the control:

a(Z(Ht) - _%Tf (UL V) FU(T)) Ui )i 2) )

for Mayer functionals and

%(1) = —e(t) — ,%Tr (Ul(T)Vuk(T)F(Uk(T))Uk(ft)uuk(t))

for Bolza functionals with quadratic fluence cost.



Computational considerations concerning the calculation of

the gradient

@ The above analytical expression for the gradient is equivalent to
8{5(:(8)) at each time t

@ For numerical optimization, discretize the control:

e(t) = (e(tr), -+, e(tn))

@ For gradient-based optimization of quantum systems, integrate just
the Schrodinger equation using, e.g., Runge-Kutta algorithms and
compute the gradient as above at each step; note there is no
additional computational cost in applying gradient algorithms
compared to algorithms that only use the value of J(g(t)).

@ Application of gradient-based optimization to general control
systems requires the integration of the costate equations as well, to
obtain the gradient; optimization algorithms based only on the value
of J(g(+)) are less expensive per iteration (generally true)

@ Algorithms based on the objective function value alone are typically
stochastic algorithms - i.e., starting two optimizations from the same
initial guess will not reach the same point on the parameter space in
n steps - whereas those based on the gradient (and/or Hessian
matrix of second derivatives) are typically deterministic.



Introduction to numerical optimization algorithms

sed vs cost function-based optimization algorithms

lient

The simplest first-order algorithm is the gradient flow of the objective
function; the gradient flow trajectory is the solution us(t) to the initial
value problem

oJ(u(t

(s H000)

Os du(t)

for a specified initial guess for the control ug, where a(s) is an adaptive
step size.

@ The discretized form of the gradient will be written VyJ(xs).

@ «fs) is typically determined by line maximization algorithms, which
search for the lowest function value along a given direction (here the
gradient), e.g. by trying a large « to start with, then backtracking
until the minimum along the direction is found.

@ We will discuss line maximization methods in both one- and
multidimensions in a later lecture
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Introduction to numerical optimization algorithms

sed vs cost function-based optimization algorithms
dient

More advanced deterministic algorithms: improvements on
steepest ascent

@ Note that the gradients VxJ(xs11), VxJ(xs) in the steepest ascent
method on successive line maximizations are orthogonal, i.e.
Vixd(xs41) - VxJ(xs) = 0, which means that successive steps do not
“interfere” with each other's maximizations.

@ However, note that VyJ(xs12) - VxJ(xs) # 0, so that may
counteract the work done in the s-th minimization during the
s + 2-th maximization

@ The notion of conjugate directions rectifies the above circumstance,
based on a second-order approximation to the objective function
near the maximum.

@ The most basic improvements on steepest ascent - the conjugate
gradient (CG) and the quasi-Newton (QN) methods - are derived
based on second-order approximations of J. We will cover both in
turn. These use only first-order information to find the optimum of a
function under the quadratic approximation.
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Conjugate gradient optimization

@ Consider the 2nd-order Taylor expansion of an arbitrary multivariable
function around a point x:

f(x) ~ c+ VF(X)(x —Xx) + %(x — %) TH(X)(x — X).
Let the (symmetric) Hessian matrix H be full rank so there is a
unique solution (let us use the notation x; = x; for convenience.

@ A well-behaved function can always be approximated in this way
near the optimum X, but let us now assume that this approximation
is valid for any x;, and make the replacement x — x;.

@ At step 0, set the step direction hyg = go, where gy denotes V£ (xp).
At step i, move in direction h; until the function stops decreasing.
Let g; = Vf(x;). Condition for maximum along a line: h; - giy1 =0

@ To improve upon SD, we ensure that all previous step directions are
perpendicular to the change of the gradient (“conjugacy condition”)
that occurs during the current step. According to the first-order
Taylor expansion for the gradient

g(xit1) — g(xi) = H(xi)(xi+1 — xi)



Introduction to numerical optimization algorithms

Gradient-based vs cost function-based optimization algorithms

Conjugate gradient

@ The “conjugacy” condition is then

g(xit1) — &(xi) = H(x)(xi1 — xi)
h lg(xi+1) — g(xi)] = hf H(x:)(xi1 — xi)
= h{ H(x)hi =0, Vj <i.
A conjugate set with respect to a symmetric matrix H is a set of
vectors such that all h;, h; in the set satisfy h[ Hh; if j # i

@ The first-order Taylor expansion for the gradient may be written
gi+1 = & + AiH(xi)hi,

where now we have scaled the step h; by a factor A;. A; is chosen to
maximize f along h;. We can solve for this step by applying the
condition h! g1 = 0 (line maximum condition).

@ Henceforth, use the notation H = H(x;) (assume a quadratic form
with constant Hessian)
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Obtaining the step size

@ To solve for the step size A; under the quadratic approximation,
multiply both sides of gj11 = gi + A\jHh; by h,-T, and apply
hljrg,'_;,_]_ =0:

hl gis1 = hl gi + \ih] Hh;

hiTgi

A= —
hT Hh;

@ Computationally, A; is found using a line maximization algorithm,
which does not require calculation of H(x;).

@ Now assume that at each step the new step hj11 can be written as a
linear combination of old step and new gradient vector:

hiy1 = giv1 + 7ihi;

we next solve for ;.



Introduction to numerical optimization algorithms

Gradient-based vs cost function-based optimization algorithms
Conjugate gradient

Obtaining the step update

@ We solve for the v; that satisfies the conjugacy condition for hj,1, h;:

hl 1 Hhi = (i1 + vihi) T Hh; =0
= g/ 1Hh; + vih] Hh;

So v; = g,;;th Since Hh; = £,

-gli(gi—&)x
h;T(gi+1 - gi)Ai

Vi =

Because g/ ;gi = 0 and h/ gi41 = 0, we obtain

_ gil-rlgiﬂ
h,'Tgi
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Introduction to numerical optimization algorithms

Gradient-based vs cost function-based optimization algorithms

Conjugate gradient

@ Although we have an expression for the \;’s, they are computed
using line maximization approaches, since CG does not use the
Hessian matrix H (due to the expense of calculating it).

@ Note that for a quadratic form (e.g., f(x) = ¢+ b"x + 1xT Hx or
simply f(x) = 1x7 Hx, with Hessian H), the optimal
X =x0+ Y. Aih;, i.e., the n h;'s comprise a (non-orthogonal)
basis for R" (they are said to be “H-orthogonal”) with basis
expansion coefficient \;. The CG algorithm then converges to the
optimum of the function in exactly n steps, whereas steepest ascent
may take an arbitrarily large number of steps to converge depending
on the initial guess.

@ The “conjugacy” of the directions in the above derivation holds
rigorously only for a quadratic form, where H is constant. In general,
H will be a function of x;, but we do not compute it in CG.

CHE 597 - Quantum Control Engineering - Spring 2010 Deterministic algorithms for optimization and control



Introduction to numerical optimization algorithms
Gradient-based vs cost function-based optimization algorithms
Conjugate gradient

Conjugate gradient optimization (cont)

@ It can be shown (try it) that h; step directions constructed by this
algorithm are all conjugate for a quadratic form, i.e.

hi Hh; =0
for all j < i as well as

g,"thO, Jj<i.

@ The conjugate gradient method converges to the solution in N steps
for a function f that is a quadratic form; a more sophisticated
convergence analysis is required for other functions, which we may
revisit later.
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2nd order algorithms
Newton’s method

Outline

© 2nd order algorithms
@ Newton's method

CHE 597 - Quantum Control Engineering - Spring 2010 Deterministic algorithms for optimization and control



2nd order algorithms
Newton’s method

Quasi-Newton methods

@ Newton’s method in multidimensions uses the inverse Jacobian
matrix to find the roots of a system of nonlinear equations.

@ When these equations correspond to the components of the gradient
vector, the method can be used to find minima/maxima

@ Quasi-Newton methods are applied only to function optimization.
They are based on the similar principles to conjugate gradient, but
rather than searching for conjugate directions based on gradient
information, they directly use the approximations to (inverse)
Hessian to compute successive step directions.

@ The approximations to the inverse Hessian in Quasi-Newton
methods only require computation of the gradient!

@ We start with Newton's method (also called the Newton-Raphson
method) in multidimensions
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2nd order algorithms
Newton’s method

Quasi-Newton methods (cont)

@ Consider finding the solution the system of equations F(x) =0

@ Denoting the components of the Jacobian matrix of F by Jjj = %,
v

we have F(xi11) — F(x) = J(x:)(xi+1 — x;)
@ Setting F(xi+1) =0, we get xj11 — x; ~ —J ~(x;)F(x) as the
Newton step

@ To apply this to minimization of a function f(x), we set
F(x) = Vf(x). Then,

Vi(xip1) — VF(x) = H(x)(xi+1 — )
Xit1 — X;j ~2 —)\;H_l(X;)Vf(X;)

where in the second line we have set Vf(x;11) = 0 as the condition
for reaching the maximum in one step, unlike conjugate gradient
where we aim to reach the maximum along a line in each step. The
step length A = 1 for a quadratic form.

@ We will return to the general Newton-Raphson (NR) method when
we discuss numerical methods for constrained optimization.
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2nd order algorithms
Newton’s method

Quasi-Newton methods (cont)

The Newton step is “successful” if Af = f(xj+1) — f(x;) > 0. Consider
the second-order Taylor expansion for Af:

1
Af = Vf(X;)(X;+1 — X,') + E(X,'Jr]_ — X;)TH(X;)(X;+1 — X,') >0

Inserting the Newton step, we get

1
Af = 7(X,'+1 — X;)TH(X;)(X;+1 — X,') + E(XiJrl — X;)TH(X;)(X;+1 — X,')
1
= 7§(X,'+1 — X;)TH(X;)(X;+1 — X,') >0

which is satisfied if H is negative-definite and the step scale A > 1/2.
Because this is not always true, Quasi-Newton methods replace the
inverse Hessian with an approximate inverse Hessian @ such that

limisoe Q(xi) = H(x;).
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2nd order algorithms
Newton’s method

Hessian updating schemes

@ X — X = 7H71Vf(X,')

@ This would take one to max if f is quadratic form; instead use line
search to see where to stop

@ Don't know H, H™!; Start w e.g. Qo = &/ as H~! guess (initial
guess depends on whether we are maximizing or minimizing f)

@ Subtract equations at iterations i and i 4+ 1 and let Vf; = Vf(x;):

Xj+1 — Xi = Qi+1(vﬁ‘+1 - Vf/)

@ Note we have chosen to require the new approximate inverse Hessian
Q11 satisfies this condition just like the real inverse Hessian would if
f were a quadratic form
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Hessian updating schemes (cont)

@ Q;y1 = Q;+ correction term
@ Find possible correction terms consistent with above expression

@ Since the approximate inverse Hessian must be symmetric, the
inverse Hessian update must take the form Q11 = Q; + Q/, where
the correction term Q} is also a symmetric matrix

@ A general symmetric matrix of order n can be written in the form
n T n . .
Yoiiaivivih =377 1 aivi ® v, i.e. as an expansion over the outer
products of its eigenvectors v; (with the expansion coefficients being
the corresponding eigenvalues).

@ The most common updating schemes are rank-two updates, i.e.,
Qi =avi@vi+anew

@ Rank two updates provide more flexibility in satisfying the QN
condition on the inverse Hessian while generating efficient update
scheme

@ The standard rank-two update schemes are called DFP
(Davidon-Fletcher-Powell), and BFGS
(Broyden-Fletcher-Goldfarb-Shanno) updates; they are closely
related, with the BFGS generally performing better.



DFP (Davidon-Fletcher-Powell) updating

@ The DFP updating scheme for the inverse Hessian approximation
uses vi = xj11 — X = h;, and vo = Qi(Vfip1 — VF) == Qi(giv1 — &i):
hi & h;
Qi1=Q +———"—
h;T(gi+1 - gi)
_ [Qi(gi+1 — &) @ (Qi(gi+1 — &)]
(gi+1 — &) " Qi(gi+1 — &)

@ Verify that this satisfies the QN required condition on the inverse
Hessian by plugging into above expression h; = Q;11(gi+1 — &i); this
comes from 2nd term while third term cancels out contribution from
Qi

@ We have

[hi @ hil(git1 — &) = hilh] (giv1 — &)
and
[Qi(gi1 — )] (g1 — &) = (8141 — &) Qilgiv1 — &)
@ An advantage of QN methods over CG is that their formulation does
not refer to precise maximization along each step direction (note we

did not require g;";g; = 0); we will return to this when we discuss
line search methods below



BFGS (Browden-Fletcher-Goldfarb-Shanno) updating

@ The BFGS update is analogous to the DFP update, but written for
the Hessian instead of the inverse Hessian

@ It follows from recognizing that if one has an update formula for
Qi = Hi_l, one can obtain an update for H; by replacing Q; by H;
and interchanging the roles of x;11 — x; = h; and
Viipa = Vi =g —g

@ The BFGS update for H; is then

i1~ &) ®(8i+1— & Hih;) ® (Hih;
Hivy = H; + 841~ 80) (gT+1 g) _( )T (Hihi)
(git1—&i)Th hT H;h;

@ The resulting formula for H;;1 can then be inverted to obtain the

update for the inverse Hessian Q11

@ The reason the BFGS update can be applied with low computational
expense, despite the fact that the update is defined in terms of the
Hessian rather than inverse Hessian, is that there exists a analytic
formula called the Sherman-Morrison formula for the inverse of a
“matrix plus an update” when the update takes the form of an outer
product of vectors.



Sherman-Morrison matrix inversion lemma

@ Through a matrix Taylor expansion, we can simplify (A+ u® v)~1:

A+tuev)t=(I+Atuav) HA™l
=(l-Aluev+Aluev-Alugv)AT?
=AT AU AT VI - AN - )
A Ay A1y

(1-=2)

where we have used the associativity of matrix and tensor products
and A= v A 1u.

@ The Sherman-Morrison formula is

(A" lu) ® (A71v)
1—-vTA- 1y

A+uev)t=A"1—

@ You may apply it to the Hessian update above (possibly in a
homework) to obtain the explicit expression for Q;11 given Q; (adds
an additional correction term to DFP)

@ S-M formula is very often used in numerical analysis to update
inverse of a matrix given a perturbation with minimal computational
expense



Line search algorithms using backtracking

Outline

© Line search algorithms using backtracking
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Line search algorithms using backtracking

Line search (adaptive step size) without bracketing

@ Line search without bracketing is designed to increase the function
“sufficiently” but not necessarily precisely to the line maximum

@ These are commonly used in NR and QN methods, but not as much
in CG (for which bracketing is used); the reason is that NR/QN do
not require precise maximization along a line, as discussed

@ Let Xpew = Xotd + AP, 0 < A <1 where p is the (Quasi-)Newton
direction; for QN algorithm at step i, X4 IS Xj, Xpew iS the current
attempt at x;11

@ Start with A = 1; set acceptance criteria that must be satisfied, or
otherwise reject and backtrack.

@ Criteria not just f(Xpew) > f(Xoid). Require average rate of decrease
of f to be at least fraction o < 1 of initial rate of increase (Vf - p):
i.e. check if f(xpew) — f(Xoid) > (V£ - p)
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Polynomial line search (backtracking)

@ Algorithm:
Q Let y(\) = f(xois + Ap); A parametrizes a straight line through the
parameter space in the direction p; then % = Vf - p, i.e., directional

derivative of f along p Solve for second order coeff based on
matching value at y(1); then solve for zero of derivative. Use this
maximum as next guess
@ Do not compute the gradient at any point other than x.q4; i.e., only
¥'(0)
© In next iteration use a cubic model (higher order Taylor
approximation of y())) based on same principle
@ Step 1: y(A) = (y(1) — ¥(0) — y'(0))A* + y'(0)A + y(0); (1) is
known
o Check: y(1) = y'(0) + y(0) + y(1) — y'(0) — ¥(0)

@ Solve for Ay = Apmax (i-€., A such that % =0)

2X\(y(1) = ¥(0) - ¥'(0)) +y'(0) =0

N — y'(0)

2(y(1) — (0) — y(0))

@ The latter is the new A guess; we have A\, < 1 since the curvature is
negative




Line search algorithms using backtracking

Polynomial line maximization (cont)

@ Compute y(A2) using A2 from quadratic model
@ Now model y(\) as a cubic, using the four known values

¥(0),y(1),y'(0), y(A2):
y(A2) = a3 + b3 + y'(0)A2 + y(0)
y(1) =a+b+y'(0) +y(0)
@ Solve the above system of equations for a, b
@ Find (local) maximum of the cubic:

dy

= 3a\3 +2bXy +y'(0) =0

\ —2b 4 /(2b)2 — 4(3a)y’(0)
2 =

6a
Compare graphs for quadratic and cubic polynomials)
@ Set A\pin = A3; note that A3 < A
@ Do same for Ag4,- -+, A\, since higher order polynomials will have
multiple local maxima
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Bracketing of minima (maxima) along a line

Outline

© Bracketing of minima (maxima) along a line
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Bracketing of minima (maxima) along a line

Golden section search

@ Bracketing is a method for obtaining the minimum of an objective
function J along a given direction (vector); it is typically used with
conjugate gradient methods along the successive noninterfering
directions

@ A bracket of a minimum of an objective function J is a triplet of
points a < b < ¢ where f(a) > f(b) and f(c) > f(b); we then have
a < Xmin < C; b is current guess for minimum

@ Golden section search: updates bracketing until bracket is narrowed
within a given tolerance

@ Based on initial bracket, choose new pt x between a, b or b, ¢

@ Given latter choice, if f(b) < f(x), new bracket is a, b, x; otherwise
b, x, c

@ Given former choice, if f(b) < f(x), new bracket is a, x, b; otherwise
x,b,c
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Bracketing of minima (maxima) along a line

Golden section search (cont)

@ Algorithms exist for choosing x given a, b, ¢c: golden section search
involves using larger of two intervals

o Let b=2 c=b

@ Call the first possible choice for the new bracket “Bracket I" (a, b, x)
and the second “Bracket II" (b, x, c¢); assume (will validate shortly)
that b < x < c.

@ Impose condition that length of bracket I, |x — al, equals length of
bracket Il, |c — b|.

=1—w. Assume w < 0.5

= w, then

@ Then must have |b— a] = |x — ¢|

o Let =b — 7
c—a

@ Since Bracket | is of length (w + z)|c — a| and Bracket Il is of length
(1 —w)|c— 4], thisimpliesw+z=1—worz=1-2w
(condition 1 on w)
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Bracketing of minima (maxima) along a line

Golden section search (cont)

]

Secondly, require scale similarity between iterations - i.e., (b, x, ¢) is

a smaller scaled version of (a, b, c): % = w (condition 2 on w)

[

to be equal

[

Solving for w given conditions 1 and 2 gives w? — 3w + 1 = 0; or
w = 0.38197 (called golden mean)

Continue until reaching tolerance in size of bracket (difference bet
outer bounds)

[

[

Convergence linear in sense of rate at which bracket size decreases
(see above ratio)
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Algorithms for control optimization

Outline

© Algorithms for control optimization
@ The shooting method
@ |terative control optimization algorithms based on PMP
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The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Two-point boundary value problems

@ Optimal control problems for Mayer functionals are often best solved
using QN or CG methods

@ For Mayer functionals, there is no way to express u(t) as implicit
function of x(t), ¢(t)

@ For Lagrange or Bolza functionals, we write 7(t) = g(x(t), ¢(t)) and
then integrate x, ¢ odes in terms of known x(0) and unknown ¢(0)

@ Mathematically this is known as a system of differential equations
with split boundary conditions or a two-point boundary value
problem

@ Even if we have analytic solutions for x(t) and ¢(t), if the
state/costate odes are coupled, we cannot solve for the unknown
integration constants in a single step
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The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Two-point boundary value problem: example

@ Numerically, we cannot just propagate the system of equations
forward from a single x(0), ¢(0) to obtain the solution

@ This circumstance arises when, upon substitution of the implicit
expression for the control in terms of x(t), ¢(t), we obtain a coupled
system of odes called a PMP-Hamiltonian dynamical system.

@ Consider the following generic example of a scalar linear control
system, whose PMP-Hamiltonian system is also linear:

B2 ] =410
with x(0) given, and ¢(T) = V. F(x(T)).

@ This problem can be solved analytically but we will use it to
illustrate the general numerical shooting approach.
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The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Numerical methods for two-point boundary value problems:
shooting method

@ The shooting method (iteratively) converges upon the target ¢(T)
vector by making successive changes in the initial conditions ¢(0);
i.e., it shoots from x(0), ¢(0), trying to hit the terminal boundary
conditions ¢(T)

@ Numerical algorithms for shooting are typically based on a
combination of (i) the Newton-Raphson method; and (ii) the
Runge-Kutta ODE integration method.

@ RK is used to integrate the state/costate ODEs at each step, given
x(0) and guess for ¢(0) vectors

@ NR is used to solve for the roots of the boundary condition
equations, i.e., ¢(T) — ¢r = 0 Call these f; and let ¢;(0) = ¢;; then
NR step is, c = A\J71F(c), where the elements of the Jacobian are

= of;
Ji = 5
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The shooting method

Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Shooting method (cont)

@ Each iteration of NR (function evaluation) requires the integration
of the 2n state, costate ODEs by RK

@ QN is typically not used since would require taking additional
derivatives in order to obtain gradient conditions rather than root
conditions; do not have analytic derivatives. QN updates cannot be
applied to Jacobian.

@ For Lagrange-type costs, the n unknown terminal boundary
conditions are on x(T), not ¢(T), but procedure otherwise same

@ Stepsizes \; typically determined by polynomial line search

@ Shooting can be applied to either Lagrange or Bolza functionals
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The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Analytical methods for two-point boundary value problems

@ For linear control systems, the elements of the Jacobian %
J

(columns of the Jacobian matrix %) can be identified analytically

@ This provides further insight into the shooting method
@ The method of unit solutions is used for this purpose

@ Method of unit solutions for solving linear two-point boundary value
problems relies on the principle of superposition: the notion that any
solution to homogeneous system of linear differential equations can
be represented as a linear combination of a complete set of basis
functions (linearly independent solutions).
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Method of unit solutions

@ Integrate PMP-Hamiltonian system using initial conditions
x(0) = Xinir and ¢(0) = 0; call resulting solution x°(t), #°(t). In
order to obtain n unknown initial conditions ¢(0):

@ Integrate with n initial conditions
¢i(0)=1,¢;(0)=0, j#i, x(0)=0,i=1,---,n. Call the
resulting solns x/(t), ¢'(t).

@ Write the general solution as linear combination

x(t) = x°(t) + Z cix'(t)
o(t) = ¢°(t) + Z ci¢'(t)

note x%(t) will contain known initial conditions X;nj

@ By setting ¢(T) = VF(x(T)), solve for the unknown coefficients
ci = ¢i(0)

@ For linear control systems, the ¢/(t) are the columns % and the
Jacobian is constant; hence NR should converge in approximately 1
step

@ Complete the solution by plugging the ¢; into expressions for

x(t), A(t), u(t)



Method of unit solutions: scalar example

@ Assume we have integrated the general scalar linear
PMP-Hamiltonian system introduced above, without application of
the initial conditions on x(t) or (unknown) terminal conditions on
o(T).

@ Method of unit solutions: (i) Write the solution with
x(0) = Xinit, ¢(0) =0, call it [x°(t), #°(t)]"; then write solution
with x(0) = 0, ¢(0) =1, call it [x}(t), ¢'(¢)]". Then we can
express the true solution as

[ ] =[50 e[ 28]

@ Here, f = ¢°(T) + co'(T) — ViF(x(c, T)), which is linear fn of c.
The Jacobian is simply % = ¢1(T).

@ Numerically, guess a value for ¢, solve for x(c, T) from the 1st row
of the vector equation above, solve for ¢, according to
Copt = ¢ — J7f(¢).

@ So, the linearity of the control system has enabled application of the
principle of superposition, which in turn leads to the linearity of the
optimization problem.



The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Self-consistent iterative algorithms: formulation

@ A common optimization strategy for Bolza functionals is the use of
so-called iterative algorithms that are based on the PMP.
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The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Self-consistent iterative algorithms: formulation

@ A common optimization strategy for Bolza functionals is the use of
so-called iterative algorithms that are based on the PMP.

@ An initial guess for u(t) (denoted @ip(t)), is used to integrate the
dynamical equation forward starting from initial condition xp, and
the costate equation backward from final condition V,(7F(x(T));
these steps are iterated self-consistently.
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The shooting method
Iterative control optimization algorithms based on PMP

Algorithms for control optimization

Self-consistent iterative algorithms: formulation

@ A common optimization strategy for Bolza functionals is the use of
so-called iterative algorithms that are based on the PMP.

@ An initial guess for u(t) (denoted @ip(t)), is used to integrate the
dynamical equation forward starting from initial condition xp, and
the costate equation backward from final condition V,(7F(x(T));
these steps are iterated self-consistently.

@ For a quadratic cost on the control (for other costs the implicit
expression for u(t) will change)

P _ pix(e), u(e). %(0) = 9

dq/)kd;tl(t) = Vi) H(xw (1), drs1(t), ukr1(t)), dus1(T) = Vi) F(xu(T))
ura(t) = 5':9(1“) (Brr1(t), FOxx(t), urs1(t)))
lier1(t) = %(t)<¢k+1(t), f(xir1(t), uksr(t)))

CHE 597 - Quantum Control Engineering - Spring 2010 Deterministic algorithms for optimization and control



Optimal control theory

CHE 597

Purdue University

January 15, 2010

CHE 597 Optimal control theory



Outline

© Course survey

® Methods covered

@ Applications and extensions
© Control systems
© Optimal control cost functionals
© Euler-Lagrange equations

e The Pontryagin Maximum Principle

© Sufficient conditions for optimality
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Course survey

Methods covered
Applications and extensions

Outline

© Course survey
® Methods covered
@ Applications and extensions
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Course survey

Course policy

@ Research- and methods-oriented

@ Homework assignments include code development for use in domain
research

@ 40% homework, coding; 20% midterm project; 20% final project;
20% final report

@ Codes developed will be available on blackboard for registered
students

@ 500 lecture slides on optimization/control techniques available on
blackboard for registered students

@ Pass/fail option permitted

CHE 597 Optimal control theory



Course survey

Methods covered
Applications and extensions

Control, estimation and optimization topics

Optimal control theory - learn to redirect dynamics to desired ends
Analytic solutions to OCT problems

Algorithms for numerical optimization: stochastic and deterministic
Controllability

Observability

Estimation methods - likelihood-based, Bayesian; estimation
algorithms: assess statistical error and incorporate

@ Optimal feedback control: Hamilton-Jacobi-Bellman equations and
dynamic programming

@ Time permitting: model uncertainty

CHE 597 Optimal control theory



Course survey

Methods covered
Applications and extensions

Numerical methods covered in HW exercises

Learn how to computationally optimize chemical, mechanical, electrical
or molecular objective functions

Genetic and evolutionary optimization

Multiobjective optimization

Constrained optimization (Newton-Raphson)

Runge-Kutta ODE integration

Markov Chain Monte Carlo numerical integration (MCMC)

°
0
o
°
°
@ Self-consistent iterative algorithms

¢

Controllability and observability assessment

Some of the codes you write may be run in high performance parallel
format to accelerate your research
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Course survey

Methods covered
Applications and extensions

Extending control engineering to the micro, submicro and
nanodomains

In addition to generic engineering applications of optimization and
control methods,
@ Introductory molecular quantum mechanics and quantum chemistry
@ Atomic and molecular optimal control
@ Laser control of reactive chemistry
@ Optimal design of quantum computers (quantum dots, nuclear spins,
etc)
@ Optimal design and control for coherent quantum transport: exciton
control for photovoltaics (nanosolar cells)
@ Optimal control of semiconductor optical switching
@ See distributed handouts for details
@ This semester’s course will be basis for molecular optimal control
book by Chakrabarti and Rabitz, Taylor and Francis, 2011: be a part
of the development
@ New course: register for blackboard access to all course materials

CHE 597 Optimal control theory



Control systems

Outline

© Control systems
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Types of control systems

We will be concerned only with first-order systems, i.e., where the
dynamics of the state evolution are specified by a system of first-order
ordinary differential equations (ODEs). In optimal control, these are
called the dynamical equations of the variational system.

Linear control system

A linear control system is one that is linear in the control and the state;
it has the general form

dx

— = Ax(t) + Bu(t

= = Ax(t) + Bu(t)

where A is a n X n matrix, B is an n X m matrix, x is the n-component
state vector and u is a m component vector of controls. A,B and x may
be either real or complex; u must be real.




Control systems

Bilinear control systems

Bilinear control system

A bilinear control system is one that is linear in both the control and the
state, and where the control and state enter multiplicatively; it has the
general form

o _
dt

A+ B,-u,-(t)] x(t)

where each B; is a n x n matrix and u = (u, - , Uupy) is the m
component vector of controls.

For linear and bilinear control systems, the term Ax(t) is referred to as
the drift of the control system, since it specifies how the system evolves
when the control is turned off. (For bilinear systems in physics, A is
sometimes referred to as the drift Hamiltonian, and B; as the control
Hamiltonians).
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Control systems

Nonlinear control systems

Nonlinear control system
A nonlinear control system is nonlinear in either the control, the state, or
both; it cannot be expressed in either form above and has the general

form
dx

o — F(x(9). u(t)).
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Optimal control cost functionals

Outline

© Optimal control cost functionals
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Optimal control cost functionals

Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.
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Optimal control cost functionals

Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.

@ The most “general” are functionals of the Bolza type:

Jx(), u()] = F(><(T))+/O L(x(t), u(t)) dt,
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Optimal control cost functionals

Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.
@ The most “general” are functionals of the Bolza type:
T
Jx(), w()] = F(x(T)) +/O L(x(t), u(t)) dt,

o If only the term fOT L(x(t), u(t)) dt is present, the cost functional is
said to be of the Lagrange type.
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Optimal control cost functionals

Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.
@ The most “general” are functionals of the Bolza type:
T
Jx(), w()] = F(x(T)) +/O L(x(t), u(t)) dt,

o If only the term fOT L(x(t), u(t)) dt is present, the cost functional is
said to be of the Lagrange type.

o If only the term F(x(T)) is present, the functional is said to be of
the Mayer type.
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Euler-Lagrange equations

Outline

© Euler-Lagrange equations
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Euler-Lagrange equations

The Lagrangian functional

The optimal control problem may be stated as
max J[x(+), u(-)] (1)
u(-)

subject to the constraint of the dynamical differential equation.

Define a Lagrangian functional J that directly imposes the constraint in
the dynamical equation:

CHE 597 Optimal control theory



First-order variation

@ Define the PMP-Hamiltonian function

H(x (), ¢(t), u(t)) = AL(x(2), u(t)) + (¢(t), F(x(2), u(t), t))



First-order variation

@ Define the PMP-Hamiltonian function

H(x (), ¢(t), u(t)) = AL(x(2), u(t)) + (¢(t), F(x(2), u(t), t))

@ Expressing the Lagrangian in terms of H and integrating

(o(t), dxd(tt)> by parts, we get




First-order variation

@ Define the PMP-Hamiltonian function

H(x (), ¢(t), u(t)) = AL(x(2), u(t)) + (¢(t), F(x(2), u(t), t))

@ Expressing the Lagrangian in terms of H and integrating

(o(t), dxd(tt)> by parts, we get
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@ The first-order variation of this Lagrangian is

8] = (V) F(x(T)) = ¢(T),6x(T)) + (¢(0), 6x(0))+

T do(t
+/ (ViH + q;(t ),5x(t)> + VyH - ou(t) dt.
0




First-order variation

@ Define the PMP-Hamiltonian function

H(x (), ¢(t), u(t)) = AL(x(2), u(t)) + (¢(t), F(x(2), u(t), t))

@ Expressing the Lagrangian in terms of H and integrating

(o(t), dxd(tt)> by parts, we get

@ The first-order variation of this Lagrangian is

8] = (V) F(x(T)) = ¢(T),6x(T)) + (¢(0), 6x(0))+

T do(t
+/ (ViH + q;(t ),5x(t)> + VyH - ou(t) dt.
0

@ The corresponding first-order conditions (Euler-Lagrange equations)
follow from the requirement that §J = 0 for any du, and hence for
any ox(t).



Euler-Lagrange equations

Euler-Lagrange equations 1,2

The first two E-L equations are

] V(f)H+d¢(t)— ,
Q V,pH=0, 0<t<T.
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Euler-Lagrange equations

Dynamical equation of the adjoint system

The first Euler-Lagrange equation can be expanded as

do(t)
dt

= —VxyH
= = AV L(x(1), u(t)) = Vo) (&(1), F(x(1), u(t)))),

which is referred to as the dynamical equation for the adjoint system.
We will write explicit forms of the E-L equations for linear and bilinear
systems, in turn.
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Euler-Lagrange equations

Dynamical equation of the adjoint system: linear control

For linear control systems, we can make the identification
Vi) (H = AL) = Atg(t).

So, we have

do(t)

==X (Vi l) — Alg(t)
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Euler-Lagrange equations

Dynamical equation of the adjoint system: bilinear control

@ For bilinear control systems, we can make the identification
Vi) (H = AL) = (AT + BT u(t)) ¢(t)

So we have

do(t)

= —AVyo L — (AT + BTu(t)) ¢(t).
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Euler-Lagrange equations

Dynamical equation of the adjoint system: bilinear control

@ For bilinear control systems, we can make the identification
Vi) (H = AL) = (AT + BT u(t)) ¢(t)

So we have

do(t)
dt

= —AVyo L — (AT + BTu(t)) ¢(t).
o If L= L(u(t)) (i.e., L is not a function of x(t), which is almost

always the case since —L typically represents a resource cost) we

have
do(t) _
= (AT + BYu(t)) ¢(t).

CHE 597 Optimal control theory



Boundary conditions for the 2nd E-L equation

@ If the cost function is of Mayer or Bolza type (latter required for
linear systems), the 2nd E-L eqn is associated with boundary
condition

¢(T) = V) F(x(T)),

@ Note that the boundary conditions for the optimal control problem
with endpoint cost, specified in the variational and adjoint
equations, are “split” between the initial and final times; the costate
¢(t) is propagated backwards in time starting from ¢(T), whereas
the “state” x(t) is propagated forward in time starting from x(0).



The third Euler-Lagrange equation: linear systems

For linear systems,

= AV L(u(t)) + (6(t), by = 0

where b is an n-component vector that is the first column of B.



The third Euler-Lagrange equation: bilinear systems

Whereas for bilinear systems,




The Pontryagin Maximum Principle

Outline

e The Pontryagin Maximum Principle

CHE 597 mal control theory



The Pontryagin Maximum Principle

Pontryagin Maximum Principle (PMP)

The Euler-Lagrange equations can be succinctly stated in terms of the
Pontryagin Maximum Principle.

For the class of problems considered above with fixed terminal time T,
the Pontryagin Maximum Principle is:

(Pontryagin) An optimal control u(-) that solves the control problem
max J satisfies %'("t) = 0 for a matrix ¢(T) = V1)yF(x(T)) for Bolza or
Mayer functionals (otherwise unspecified for Lagrange functionals) and

scalar \ where at least one of ¢(T), \ is nonzero.
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PMP conditions for functionals: bilinear control

@ For a bilinear control systems, the PMP thus demands that

OH _>\8L(u(t))
du(t) ~ Ou(t)

+(0(1), Bx(t)) =0, 0<t<T,

for cost functionals of the Lagrange type.



PMP conditions for functionals: bilinear control

@ For a bilinear control systems, the PMP thus demands that

OH _>\8L(u(t))
du(t) ~ Ou(t)

T (6(e), Bx(£) =0, 0<¢t< T,
for cost functionals of the Lagrange type.

@ For cost functionals of the Bolza type, we have

OHg _ |\ OL(u(t)

8u(t) - 8u(t) + <¢(t)) BX(t» = 0

for bilinear control systems, with the boundary condition
#(T) = Vu1)F(x(T)) on the costate imposed.



PMP conditions for functionals: bilinear control

@ For a bilinear control systems, the PMP thus demands that

OH _>\8L(u(t))
du(t) ~ Ou(t)

T (6(e), Bx(£) =0, 0<¢t< T,
for cost functionals of the Lagrange type.

@ For cost functionals of the Bolza type, we have

OHg _>\8L(u(t))
du(t) ~ ou(t)

+ (o(1), Bx(t)) = 0

for bilinear control systems, with the boundary condition
#(T) = Vu1)F(x(T)) on the costate imposed.

@ For cost functionals of the Mayer type, we have

Su(e) = (0(0) Bx(1) =0

for bilinear control systems, with the boundary condition
#(T) = Vu1)F(x(T)) on the costate imposed.



The Pontryagin Maximum Principle

PMP conditions for functionals: linear control

@ For linear control systems, the PMP demands that
oH A(’)L(u(t))
ou(t) = ou(t)

for cost functionals of the Lagrange type.

+(¢(t),b) =0, 0<t<T,
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The Pontryagin Maximum Principle

PMP conditions for functionals: linear control

@ For linear control systems, the PMP demands that
oH A(’)L(u(t))
ou(t) = ou(t)

for cost functionals of the Lagrange type.

+(¢(t),b) =0, 0<t<T,

@ For cost functionals of the Bolza type, we have
OHg 0L(u(t))
Ou(t) du(t)
for linear control systems, with the boundary condition
#(T) = Vu1)yF(x(T)) on the costate imposed.

+ ((t), b) =0
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The Pontryagin Maximum Principle

PMP conditions for functionals: linear control

@ For linear control systems, the PMP demands that
oH A(’)L(u(t))
ou(t) = ou(t)

for cost functionals of the Lagrange type.

+(¢(t),b) =0, 0<t<T,

@ For cost functionals of the Bolza type, we have
OHp OL(u(t)) -
= t),b) =0
for linear control systems, with the boundary condition
#(T) = Vu1)yF(x(T)) on the costate imposed.
@ For cost functionals of the Mayer type, we have
OHp -
= {(¢p(t),b) =0
Su(e) = (9(0)-B)
for linear control systems, with the boundary condition
&(T) =V F(x(T)) on the costate imposed.
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Sufficient conditions for optimality

Outline

© Sufficient conditions for optimality
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Sufficient conditions for optimality

Legendre conditions for optimality

Satisfaction of the first-order conditions following from the PMP is a
necessary but not sufficient condition for optimality of a control &(+).
So-called Legendre conditions on the Hessian W which depend
on the type of cost, are also required for optimality. These are discussed
further in the next lecture.
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Lagrange and Bolza costs
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Outline

@ Solution sets to optimal control problems

© Analytic solutions: general guidelines
@ Strategies for solving optimal control problems
@ An example linear system

© Analytic solutions to quantum control problems
@ Nuclear magnetic resonance
@ Quantum control with quadratic cost: fluence minimization

© The need for numerical methods
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Solution sets to optimal control problems
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@ Solution sets to optimal control problems

CHE 597 - Quantum Control Engineerin,

Spring 2010 Analytic solutions to OCT problems



Solution sets to optimal control problems

Solutions sets to Lagrange control problems

@ Denote the space of admissible controls ¢(-) by K. Recall that the
condition for optimality of quantum controls for Lagrange costs (on

U(N)) was

OH oL(e(t)) i

=A ——Tr (UN(T)a(T)UT(t)pU(t)) =0, 0<t< T

50 = Moty B (U(MATIVU(e) =0, 0< e <

@ Imposition of an endpoint constraint on the state (for Lagrange
functionals) places restrictions on the matrix ¢(T) and hence
restricts admissible optimal controls to a subspace §; C K. A
unique optimal control is then specified.
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Solution sets to optimal control problems

Solutions sets to Mayer and Bolza control problems

@ For Bolza-type functionals, the PMP can explicitly specify a unique
optimal control £(-) € K in the absence of an endpoint constraint,
since it may be possible to solve for £(-) when
¢(T) = VF(x(T)) # 0; a unique control is specified there is a
unique state that maximizes F(x).

@ For Mayer-type cost functionals, the PMP condition defines a
submanifold Sy C K of codimension equal to the number of
constraints present in the condition VF(x(T)) =0 (e.g., N?,

N2 — 1, or 1 for unitary propagator, density matrix or observable
control, respectively).

We will focus on analytical solutions to OCT problems with Bolza costs
or Lagrange costs with a terminal constraint, because a unique optimal
control exists for these problems.
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Types of performance indices (Lagrange cost functions)

The type of Lagrange cost function plays an important role in
determining the solution strategy and characteristics of closed form
optimal control solutions.
@ A linear cost function can be expressed in the general form
fOT cTx(t) dt



Types of performance indices (Lagrange cost functions)

The type of Lagrange cost function plays an important role in
determining the solution strategy and characteristics of closed form
optimal control solutions.

@ A linear cost function can be expressed in the general form
fOT cTx(t) dt

@ A quadratic cost function can be expressed in the general form

T : o .
3 Jo xT(£)Qx(t) dt where Q is a (not necc positive-definite, but
symmetric), i.e., as a quadratic form.



Analytic solutions: general guidelines ies for solving optimal control problems
ymple linear system

Outline

© Analytic solutions: general guidelines
@ Strategies for solving optimal control problems
@ An example linear system
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Solving OCT problems

@ Solving optimal control problems in closed form is hard because one
must not only integrate systems of coupled differential equations but
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Solving OCT problems

@ Solving optimal control problems in closed form is hard because one
must not only integrate systems of coupled differential equations but

@ The differential equations are expressed parametrically in terms of
controls; one must simultaneously solve for the optimal values of
these parameters.
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Solving OCT problems

@ Solving optimal control problems in closed form is hard because one
must not only integrate systems of coupled differential equations but

@ The differential equations are expressed parametrically in terms of
controls; one must simultaneously solve for the optimal values of
these parameters.

@ The solution to a control problem (either the parametric form of the
controls or the explicit function) is called the control law.
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems

© Find the adjoint equations for the control system.
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems

© Find the adjoint equations for the control system.

Q Express the control u(t) in terms of the state x(t) and the costate

(1)
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems

© Find the adjoint equations for the control system.

Q Express the control u(t) in terms of the state x(t) and the costate
(1)

© If the adjoint equations are uncoupled to the dynamical equations,
a) integrate them. Express undetermined integration constants in
terms of ¢(T). b) Insert this solution for ¢(t) into the dynamical
equations and solve.
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems (cont)

@ If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of ¢(T) and the known
initial conditions x(0).
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems (cont)

@ If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of ¢(T) and the known
initial conditions x(0).

@ /f the cost functional is Lagrange, with an endpoint constraint on
the state, use this constraint to obtain ¢(T) and hence explicit
solutions for ¢(t), x(t).
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems (cont)

@ If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of ¢(T) and the known
initial conditions x(0).

@ /f the cost functional is Lagrange, with an endpoint constraint on
the state, use this constraint to obtain ¢(T) and hence explicit
solutions for ¢(t), x(t).

Q If the cost functional is Bolza, use ¢(T) = VF(x(T)) to obtain a
relation between ¢(T) and x(T); substitute this implicit expression
for ¢(T) into all equations to obtain explicit expressions for all
constants and determine x(t), ¢(t).
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

General steps for solving OCT problems (cont)

@ If the adjoint equations are coupled to the dynamical equations,
solve the system simultaneously (e.g., using Laplace transforms);
again express integration constants in terms of ¢(T) and the known
initial conditions x(0).

@ /f the cost functional is Lagrange, with an endpoint constraint on
the state, use this constraint to obtain ¢(T) and hence explicit
solutions for ¢(t), x(t).

Q If the cost functional is Bolza, use ¢(T) = VF(x(T)) to obtain a
relation between ¢(T) and x(T); substitute this implicit expression
for ¢(T) into all equations to obtain explicit expressions for all
constants and determine x(t), ¢(t).

Q Use the resulting explicit solutions for x(t), ¢(t) in the equation for
u(t) to obtain the optimal control T(t).
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Solving bilinear vs. linear control problems

@ For bilinear (or nonlinear) control systems, the ode’s resulting from
insertion of u(t) in terms of x(t), ¢(t) is nonlinear.
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Solving bilinear vs. linear control problems

@ For bilinear (or nonlinear) control systems, the ode’s resulting from
insertion of u(t) in terms of x(t), ¢(t) is nonlinear.

@ Thus bilinearity of the control system leads to a nonlinear
Schrodinger equation, and it is generally difficult or not possible to
solve analytically for optimal controls.
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Solving bilinear vs. linear control problems

@ For bilinear (or nonlinear) control systems, the ode’s resulting from
insertion of u(t) in terms of x(t), ¢(t) is nonlinear.

@ Thus bilinearity of the control system leads to a nonlinear
Schrodinger equation, and it is generally difficult or not possible to
solve analytically for optimal controls.

@ However, for the simplest problems, alternate analytic solution
strategies are possible.
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Temperature control

The temperature in a room is denoted y(t). It is desired to heat the
room (to a target temperature) using the smallest possible amount of
energy (heat). Let the ambient (external) temperature be denoted ye.
The rate of heat supply to the room is denoted u(t). The dynamics of
temperature change are then given by

dy

pri
where a, b are constants depending on the insulation and rate of heat
transfer. Let the total energy (heat) be given by %fOT u?(t) dt. We are
given the initial temperature x(0).

—a(y(t) — ye) + bu(t)

The problem: Calculate the control function &(t) that heats the room
to temperature yr at time T while minimizing the energy used, using two
1,7 2

possible performance indices: a) J = 5 [, u*(t) dt; b)

J=kly(T) -y + 1 fOT u?(t) dt (i.e., the final temperature need not
be precisely yr).



Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Example: temperature control

o Let x(t) = y(t) — ye and xr = yr — ye. If Lagrange,

T
J:/0 L(t) dt

Problem is m(n)w J subject to % = —ax(t) + bu(t)
u(t
& = Ax(t) + Bu(t)
Q x(T)=xr

o |f Bolza, ;
J=F(x(T)) +/ L(t) dt
Jo
F(x(T)) = k[x(T) — x¢]*. T(It? J subject to

& — Ax(t) + Bu(t)
Q ¢(T) = Vun)F(x(T))
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Example: temperature control

@ The PMP-Hamiltonian is:

H(x(2), ¢(t), u(t)) = AL(x(t), u(t)) + (&(t), Ax(t) + Bu(t))
= ku?(t) — o(t)ax(t) + ¢(t)bu(t)

@ The adjoint variational equation is:

do(t) _
= ~VaH((2), 0(8), (1))
= _axi(t)[—qb(t)ax(t) + ¢(t)bu(t)]
= ¢(t)a

CHE 597 - Quantum Control Engineering - Spring 2010 Analytic solutions to OCT problems



Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Example: temperature control (cont)

@ Integrate above homogeneous 1st order ODE w const coeffs:

do(t)
T o(t)a

6(t) = cexplat)
@ Expressing ¢ in terms of ¢(T):

¢ = exp(—aT)é(T)
o(t) = expl—a(T — H)]6(T)
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Example: temperature control (cont)

OH
=¢(t)b+u(t)=0, 0<t<T

Gt~ A0b+E(D) =0, 0<e<
or O(t) = —¢(t)b. Now, insert implicit expression for control (in terms of
¢(t)) into the dynamical equation of the variational system (1st E-L
equation):

d

= = —ax(t) - b(t)

— —ax(t) — b expl—a(T — 1)]6(T)
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Analytic solutions: general guidelines Strategies for solving optimal control problems
An example linear system

Example: temperature control (cont)

The equation % = —ax(t) — b*exp[—a(T — t)]¢(T) can be integrated

analytically via Laplace transforms:
@ The Laplace transform of ax(t) is aX(s)

@ The Laplace transform of exp(at) is -

s—a
o Laplace transform of % is sX(s) — x(0
@ Thus, in the frequency domain,
X(s) = 2 — L exp(—aT)( T) ezt
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¢

[

¢ ¢

[

The inverse LT of - (£71(X)) is exp(—at)

Partial fraction expansion of

s+a s+a
1 .
Fa)s—a)"
1 _ (651 + (%)
(s+a)(s—a) s+a s—a

1=ai(s—a) + ax(s + a)

Let s = a; then az = 5=

Let s = —a; then oy = — ==

1

1 1)1 _ 1
(s+a)(s—a) ~ 2a |:sfa s+a:|

So

£ [(s+ a)l(s— a)] =557 Lla B lera}

o= lexp(at) — exp(—at)]

1
= —sinh(at
S Sin (at)

x(t) = x(0) exp(—at) — % exp(—aT)¢(T)sinh(aT)



@ Note both optimal control and state trajectory expressed implicitly
in terms of ¢(T); need ¢(T) to solve control problem
@ Two ways to obtain ¢(T):

© Lagrange cost: use endpoint constraint on state, i.e., x(T) = xr and
solve for ¢(T) from

xr = x(0) exp(—at) — bf: exp(—aT)p(T)sinh(aT)
@ Bolza cost: use boundary condition
¢(T) = V< F(x(T))
= 2k[x(T) — x¢]

@ Then, obtain optimal control T(t) by substituting the known value
of ¢(T) into the parametric expression for u(t):

u(t) = —o(t)b
= expla(T — 1)]¢(T)b
=expla(T — t)]2k[x(T) — x¢]b

and finally insert into dynamical equation of variational system to
obtain optimal trajectory (here, temperature of the room as a
function of time).



Example: temperature control - Lagrange solution

o xr = x(0)exp(—aT) — %2 exp(—aT)@(T)sinh(aT)
@ Solve for ¢(T):

&(T) = (xr — x(0)exp(—aT)) = exp(aT)(smh(aT))

P
= (7 — x(0) exp(~aT)) 22 (1 + exp(~2aT))
@ Insert into T(t) expression:
a(t) = exp[—a(T — t)]o(T)b
= expl-a(T — 1)) (xr — x(0)exp(~aT)) 22(1 + exp(~2aT))

@ Consider the case where the target temperature is xr = 10 and the
initial temperature is x(0) = 0;

0(t) = expl—a(T — t)]z_zau + exp(—2aT))"!

@ Now verify the solution by inserting the &(t) into x(t) expression:

%(t) sinh at
X =
sinhaT




Example: temperature control - Bolza solution

@ For Bolza functionals, since ¢(T) = V,F(x(T)) = 2k[x(T) — x¢]
@ Now solve for x(T) using this expression (again assume x(0) = 0

and x¢ = 10):

b? b?
x(T)+ " exp(—aT)2kx(T)sinh(at) = - exp(—aT )2kxgsinh(aT)
%2 exp(—aT)2kxs sinh(aT)
1+ 2k%2 exp(—aT)sinh(aT)
10b%k sinh(aT)

aexp(aT) + 2b%ksinh(aT)

x(T) =

@ Obtain optimal control u(t):

o(t) = expla(T — t)]o(T)b
= expla(T — t)]2k[x(T) — x¢]b
10b%k sinh(aT)
aexp(aT) + 2b%ksinh(aT)

= expla(T — t)]2k][ — x¢]b

@ Now verify the solution by inserting the u(t).
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© Analytic solutions to quantum control problems
@ Nuclear magnetic resonance
@ Quantum control with quadratic cost: fluence minimization
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Nuclear magnetic resonance
Analytic solutions to quantum control problems Quantum contro h quadratic cost: fluence minimization

Angular momentum

@ Classical angular momentum: L = rxp

@ Quantum angular momentum: quantize by replacing r, p by their
quantum operator analogs:

etc.

@ To solve for eigenfunctions, necessary to switch to spherical
coordinates; expression for Laplacian complicated, will not study

@ Eigenvalues of |L|? are h2/(/ + 1); of L, are hm, where —/ < m </
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Nuclear magnetic resonance
Analytic solutions to quantum control problems Quantum contro h quadratic cost: fluence minimization

What is spin?

@ Particles in quantum mechanics (including both electrons and
nuclei) have an intrinsic property called spin, which is a form of
angular momentum

@ The spin magnetic moment (which we denote by ps) is proportional
to the total spin S

@ Analogously to the dipole interaction with the electric field, the
magnetic field-spin interaction energy is —pus - B = ¢S - B

@ It is possible to manipulate nuclear spins in molecules without
affecting the rotational, vibrational, or electronic states; thus we
focus on nuclear spins

@ /(|S|?) is the expectation value of the norm of the total spin
angular momentum of the particle
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Nuclear magnetic resonance
Analytic solutions to quantum control problems Quantum contro h quadratic cost: fluence minimization

spin operators

@ Observables corresponding to the x, y and z components of particle
spin are 5,,5,, 5;:

h{o 1 hi0 — h
5X — 5 |: 1 0 :| ) Sy - 5 |: 2 0 :| ) 52 — 5
o Eigenvalues are Z, — 2 (“spin-1/2" particles)

o Commutation relations are: [S;, Sj] = ifi€jj Sk where € is a
completely antisymmetric tensor

@ These are called the the fundamental commutation relations of
angular momentum and are satisfied by any form of angular
momentum
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Nuclear magnetic resonance
Analytic solutions to quantum control problems Quantum cont with quadratic cost: fluence minimization

Tensor products of Hilbert spaces: vectors

@ The tensor product (or direct product) of Hilbert spaces is denoted
H! @ H2: its dimension is mqmy, where my, my are the dimensions
of H*,H?2, respectively (since there are m;ms possible joint states)

@ Consider the matrix representation of a vector in this product space:

it is denoted |¢) ® |¢), where ® now refers to the vector Kronecker
product

o Let |¢;) (i =1,---,m) denote the basis vectors of 1) and |¢;)
(j=1,---,n) denote those of |¢). The Kronecker product of
column vectors |¢), |¢) has as basis vectors

|(¥ @ ®)nivjt1) = |¥i, ¢;). (Note this is different from the outer
(tensor) product of the vectors.)
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Analytic solutions to quantum control problems Quantum cont with quadratic cost: fluence minimization

Tensor products of Hilbert spaces: operators

@ The same principle holds for tensor products of the sets of operators
acting on H!, H? (i.e., B(H'), B(H?))

@ The Kronecker product of (order mxm, nxn) matrices A, B, denoted
A® B = C, has the form

allB almB

amB - ammB

@ In particular, an operator A in B(#!) has representation A® I,
(Kronecker product) on H! ® H? (direct product)

@ One may also have tensor products of finite-dimensional and
infinite-dimensional Hilbert spaces
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Nuclear magnetic resonance
Analytic solutions to quantum control problems Quantum control with quadratic cost: fluence minimization

Schrodinger equation for single spin in time-varying xy
magnetic field

o Hy = cS5¢Bi(t) + ¢S5, B,(t)
@ The static magnetic field is much stronger than the time-varying one
© () =~ [cB(2) - S] (1)
at\ T TR
=~ [¢S: B, + S.B.(t) + ¢S, B, (1) v(t)
Let ¢ = 1 for convenience, and use standard notation e(t) = By(t),

ey (t) = B,(t) for controls. Note we now have vector of controls as well
as state vector (both 2-dimensional in this case).
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Analytic solutions to quantum control problems Quantum control with quadratic cost: fluence minimization

Example: quantum state control of a single spin with
minimal energy

@ For Lagrange type cost functionals with bilinear qc systems, the
special case of a quadratic cost on the controls is worth attention
because of its interpretation in terms of the total fluence of the field.
Consider case with two controls ex(t), €, (t).

The problem

Find the time-varying fields e.(t) and €,(t) that drive the system to a
specified final state v at time T using minimal energy. The dynamical
equation is

< () =~ =5 BO(E)

_ % [S.B. + Scex(t) + Sye, ()] ¥(t))
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Analytic solutions to quantum control problems Quantum control with quadratic cost: fluence minimization

Example: quantum spin state control (cont)

Y(T) = 1 within a global phase.
@ Lagrange formulation:

1 4 2 2
J 2/0 E2(t) + 2(t) dt

H((t), 6(1),€(8)) =5 (eX(£) + £5())—

((0) 11528 + Sienlt) + Sy, ()] (2)
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Analytic solutions to quantum control problems Quantum control with quadratic cost: fluence minimization

Example: quantum spin state control (cont)

The costate equation is

do'(t)
dt

—VyH((1), 9(t),2(t))

%(zﬂ(t) [52B: + Skex(t) + Sye, (t)]

or

do(t)

- *% [Ssz + 5x5X(t) + Sygy(t)] ¢(t)
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Example: quantum spin state control (cont)

The PMP demands

(t) = 1 (6(0)1S: (1)
£)(8) = 3 (6015, (1)

Now we could insert these into the Schrédinger equation and solve but
note that the resulting ode is nonlinear. Instead, we apply additional
conditions following from the PMP. The above equations imply

dzz;E __{ dt (0)]Se | (t)) + <(r)|sx|%w(t)>}
dey(t) iy, d d

2 = S0, (D) + (@IS, w()}
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Example: quantum spin state control (cont)

d
at
()15, S0(8)) = 1 01 ()5, 1528 + Seun(8) + S, ()] (2)

Recall Pauli commutation relations: [S;, S;] = ihejic Sk where € denotes
the elements of a completely antisymmetric tensor. So

(Zo(0)ISy[¥(1)) = %aﬁ(t) [S2B2 + Sxex(t) + Sye, (2)] S, 4(t)

£(8) =~ V(0T (OIS0, S 1oy (10(8) + 61 (1)[Ss ScIU(1)E,)
;2

=5 (81 ()50 (1)zy (1) = is'(1)S,v(1)B.)

gy(t) = *(%)2(¢T(f)[5y, Sxlex(t)e(t) + o1 (1)[Sy, S:1u(t)Bz)

=7 (19" (£)S0(t)ex(t) — i6" () Scti(t)B;)
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Analytic solutions to quantum control problems Quantum control with quadratic cost: fluence minimization

Additional conserved quantities: expectation value of S,

@ Note that we still have expressions for e.(t), e, (t) that are implicit
functions of the state and costate.
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Analytic solutions to quantum control problems Quantum control with quadratic cost: fluence minimization

Additional conserved quantities: expectation value of S,

@ Note that we still have expressions for e.(t), e, (t) that are implicit
functions of the state and costate.

@ According to the condition % (%&"t)) = 0, there are additional

conserved quantities (as long as 8(«22) is not an explicit function of

time). These can help us solve the Lagrange control problem
analytically if the dimension of the system is sufficiently small, so
that the additionally conserved quantities provide enough additional
conditions to fully specify the optimal control.
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Additional conserved quantities: expectation value of S,

@ Note that we still have expressions for e.(t), e, (t) that are implicit
functions of the state and costate.

@ According to the condition i (%&"t)) = 0, there are additional

conserved quantities (as long as ‘92) is not an explicit function of

time). These can help us solve the Lagrange control problem
analytically if the dimension of the system is sufficiently small, so
that the additionally conserved quantities provide enough additional
conditions to fully specify the optimal control.

@ In the present case we have 66 H(y(t), #(t),e(t)) = 0 and hence
g [%H(d)(t), o(t), 5(t))] = 0 giving us the conserved quantity

(0(t)[52[(1)) =
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Example: quantum spin state control (cont)

Applying the latter conservation law in the equations for £,(t) and £,(t),
and recalling that £¢'(t)S,1(t) =&, (t) (similarly for €,), we obtain the
coupled system of first order ODEs

Ed(t) = —(K — B.)ey (1)
é)’(t) = (K - Bz)gx(t)

which has (parametric) solutions

ex(t) = Ccos(wt + )
gy(t) = Csin(wt + )
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Example: quantum spin state control (cont)

@ Next step: Solve for C (field's temporal amplitude scale), w (field
frequency), and « (field phase) given endpoint constraint, vy
(normalization is implicit in these conditions)

@ Need to insert parametric solns into dynamical or costate equations
and explicitly integrate.

d i .
E'w(t» =-z [S.B, + CS, cos(wt + a) + CS, sin(wt + )] |¥(t))

_ 1 B, C exp[—i(wt + a)]
" h ( Cexp[i(wt + a)] -B, > [9(t))

subject to ¥(T) = ¢¢ (two conditions), ¥(0) = 1o (one additional
condition) In the homework, we will solve for (t) in 1st-order
perturbation theory.

@ Note the system of dynamical odes is coupled due to norm
constraint on v
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© The need for numerical methods
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The need for numerical methods

The need for numerical optimization

@ Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional
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The need for numerical methods

The need for numerical optimization

@ Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional

@ For a Bolza-type cost functional, the PMP optimality condition can
be solved implicitly for the control field,
e(t) = £ Tr (UTN(T)Vyr F(U(T))U(Tt)uU(t)), as in the case of
Lagrange costs.
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The need for numerical methods

The need for numerical optimization

@ Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional

@ For a Bolza-type cost functional, the PMP optimality condition can
be solved implicitly for the control field,
e(t) = £ Tr (UTN(T)Vyr F(U(T))U(Tt)uU(t)), as in the case of
Lagrange costs.

@ However, since ®(T) is no longer free and depends on the final time
propagator U(T), integration of the Schrédinger equation with this
implicit expression for the field is not possible and numerical
optimization is needed.
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The need for numerical methods

The need for numerical optimization

@ Because analytical solutions to OCT problems typically require the
presence of multiple symmetries, numerical methods are required to
solve most problems. The best method depends on the control
system and cost functional

@ For a Bolza-type cost functional, the PMP optimality condition can
be solved implicitly for the control field,
e(t) = £ Tr (UTN(T)Vyr F(U(T))U(Tt)uU(t)), as in the case of
Lagrange costs.

@ However, since ®(T) is no longer free and depends on the final time
propagator U(T), integration of the Schrédinger equation with this
implicit expression for the field is not possible and numerical
optimization is needed.

@ More generally, even for Lagrange costs, if the dynamical and adjoint
(systems of) ODEs do not afford analytical solutions (recall we
solved only special simple cases above), numerical optimization is
needed.
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@ Feedback control of time-invariant linear systems
@ Kalman gain

9 Lyapunov equations
@ Riccati equations
@ Analytic solution to algebraic Riccati equation

e Dynamic programming
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Feedback control of time-invariant linear systems
Kalman gain

Outline

@ Feedback control of time-invariant linear systems
@ Kalman gain
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Feedback control with Bolza functionals

° Now consider Iinear system with nonzero u(t) and cost
f uT (t)Ru(t) dt + %XT(T)S(T)X(T) (i-e.,

unllke the Lagrange functlonal with endpoint state constraint used
for controllability analysis, use a Bolza functional with the Lagrange
term also containing quadratic cost on x(t)). The final state is thus
not constrained; and the cost on the state will enable us to
formulate time-varying feedback control

@ By appropriately large weighting of 1x(T)S(T)x(T), can drive
x(T) arbitrarily close to desired endpoint, while executing feedback
along trajectory, if system controllable

@ With T — oo, control system is called linear quadratic regulator
(LQR)

@ In these deterministic feedback control problems, we do not update
state estimates with observations; we assume the state is can be
directly measured at any time t; later we will discuss linear quadratic
Gaussian regulator (LQG), which is stochastic feedback control
problem where state must be estimated



Kalman gain

@ The PMP-Hamiltonian system is:

[&]-[% ][]

with the 2N x 2N matrix denoted the PMP-Hamiltonian matrix H
@ Recall: to assess controllability, let —Q = 0; to assess observability,
let —-BR™!BT =0
@ Generalizing the scalar solution, implicitly, optimal control is
U(t) = —R71BTS(t)x(t), where we have made the linear ansatz

¢(t) = S(t)x(t)

d
d—j = Ax(t) — BR™1BTS(t)x(t)
— (A— BK()x(1)

@ K(t) = R71BTS(t) is called the Kalman gain; it provides
(time-varying) state-dependent feedback to the control

@ To solve the problem, we need to find the matrix function S(t); we
will later show that S(T) is the same as that which appears in the
cost functional



Riccati equations

Lyapunov equations Analytic solution to algebraic Riccati equation

Outline

9 Lyapunov equations
@ Riccati equations
@ Analytic solution to algebraic Riccati equation
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Asymptotic convergence, Lyapunov functions

o Consider the deviation variable (error residual) X(t) = x(t) — X,
where X denotes the fixed point (x = 0)

@ For a linear system, £%(t) = AX(t)

o Consider the cost function J(X) = %7 Sk with S =D'"D
(symmetric, positive definite)

o If J()"() decreases monotonically in the vicinity of a fixed point
(converging to the unique value), it is said to be a Lyapunov
function and the neighborhood is said to be stable (for linear system,
the system is stable); this definition holds for more general functions
than the one above

o Then, if [° %7 (t)Sx(t) dt is bounded, the linear(ized) system is
said to be exponentlally asymptotically stable (for a linear system,
globally stable) Occurs if A has only negative real parts to all its
eigenvalues.

@ Exponential convergence (stability):
[IX(0)I] = [lexp(At)x(0)]|
[IX(0)]] < kexp(=Ait) [[X(0)]],

where \; denotes the smallest (in absolute value) real part of an
eigenvalue of A



Lyapunov equations

@ A (differential) Lyapunov equation with Lyapunov function
J(x) = $xTS(t)x is of the form S(t) = S(t)A+ ATS(t) + T, where
T is positive definite; solve with either S(0) or S(T) given
@ Soln to diff Lyapunov equation converges to constant matrix S if the
system is asymp. stable. There, S =0
@ An algebraic Lyapunov equation is derived from steady state
condition S = 0; it is the resulting Lyapunov equation with S = 5(0)
(for a backwards integrated differential Lyapunov equation)
@ To see the origin of the (algebraic) Lyapunov equation, compute
J(x(t)) for a linear dynamical system:
. 1.+
J(x(t)) = 5% Sx
=xT5x
xT SAx
xT(SA+ AT S)x

where the last line follows since the scalar (xTSAx)T = xTAT Sx.
For J(x) < 0, must have SA + ATS negative definite



Riccati equations

Lyapunov equations Analytic solution to algebraic Riccati equation

Lyapunov equations in optimal control

@ In either case, solve for S(0) or S(t); solve algebraic Lyapunov
equation to obtain steady-state (asymptotic) cost and steady-state
feedback gain (latter through a minor variation called Riccati eqn)

@ Time-invariant control strategies (i.e., u(t) = c, a constant) often

chosen to stabilize otherwise unstable dynamical systems; are based
on steady-state gain

@ Optimal feedback control strategies u(x(t)), discussed below, are
based on appropriate choice of cost function, esp Lagrange term
L(x(t)) = $xT(t)Qx(t) + 2u" (t)Ru(t), through choice of weighting
matrices Q and R
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o) = L [S()x(2)] = S(t)x(1) + S(t)x(t)
= S(t)x(t) + S(t)(Ax(t) + Bu(t))
—Qx — ATg(t) = S(t)x(t) + S(t)(Ax(t) — BR™'BT¢(t))
—Qx — ATS(t)x(t) = S(t)x(t) + S(t)(Ax(t) — BR™*BT 5(t)x(t))
S(t)x(t) = (ATS(t) — S(t)A+ S(t)BR™*BT 5(t) — Q)x(t)
S(t) = —ATS(t) — S(t)A+ S(t)BR™1BTS(t) - Q

@ For this system, the optimal feedback gain is time varying:
K(t) = R~1BTS(t); to obtain, must solve Riccati equation for S(t)
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Riccati equations

Lyapunov equations Analytic solution

Riccati equation (cont)

@ Riccati equation is propagated backwards in time (since S(T)
specified); asymptotic limitis T — t — oo (assume T — oo, then
can set t = 0)

@ Formal solution possible, but requires solution of complete
PMP-Hamiltonian linear system, as in case of temperature control
problem in HW 2; this is due to coupling (presence) of x(t), ¢(t) in
both state, costate odes: revisit later

@ Solution 5(0) (by backwards integration) to (differential) Riccati
equation with boundary condition Tlim S(t) is a constant. The

— 00
corresponding algebraic Riccati equation
—ATS5(0) — S(0)A+ S(0)BR1BTS(0) — Q = 0 is solved for S(0).
Note that with S(0)BR"1BTS(0) — Q positive-definite this satisfies
the conditions for a algebraic -Riccati- equation

@ The corresponding feedback gain is called the steady-state feedback
gain; linear systems are stable with it, as long as systems are
controllable
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Observability Lyapunov equation

o With only x7 Qx term in J, S ode is called observability Lyapunov
equation

—¢( )= IS(Ox(1)] = S(e)x(1) + S(t)x(t)
—AT(/>(t) Qx = S(t x(t) + S(t)Ax(t)
—ATS(t)x(t) — Qx = 5(t)x(

o ¢(t) = S(t)x(t) again, but solution S(t) differs from LQR
@ Can be formally integrated in closed form analogously to x(t) for
time-invariant linear system

S(t) =exp[AT(T — t)]S(T) exp[A(T — t)]+

+/0 exp[AT(T — t)]Qexp[A(T — t)] dt



Controllability Lyapunov equation

@ With only u” Ru term in J, the corresponding matrix ode is called
controllability Lyapunov equation

@ Controllability Lyapunov equation not expressed in terms of S, rather
P(t) = P(t)A+ ATP(t) + BR7BT

@ Formal solution similar:
-
P(t) = exp[At]P(0) exp[AT t] +/ exp[At]BRIBT exp[ATt] dt
0

(unlike Ricatti and observability Lyapunov equations, propagated
forward in time)

@ By using P(0) = 0, solution for P(t) provides controllability
Gramian: may enable simple solution of linear, quadratic control
cost problems

@ Next time will discuss stabilizability, which involves choosing a
(feedback) control strategy that causes the system to converge
asymptotically to a fixed point. In so doing we will discuss the
relationship between the optimal control time-domain and frequency
domain control formulations (latter typically not optimal)



Cost “to-go”

@ The cost to-go J(t) is the cost incurred over the trajectory portion
[t, T]; minimized over the remaining trajectory, irrespective of the
prior trajectory, in closed-loop feedback.

@ Being a Lyapunov function, J(t) must decrease monotonically over
time (if the system is stable)

o Example: J(t) = 2xT(t)S(t)x(t) for observability Lyapunov
equation; check:

T(T)S(T)X(T) = / S (T(0)S(0)x(1)) ot +xT(0)S(O)x(0)
= xT(£)S(t)x(t) + xT(£)S()x(t) + xT (£)S(t)x(t) dt + x"(0)S(0)x(C

TXT(t)ATS(t)X(t) +xT(t)(=S(t)A — ATS(t) — Q)x(t)+

I
+ 5~ o—

xT(t)S(t)Ax(t) dt + xT(0)S(0)x(0)



Riccati equations

Lyapunov equations Analytic solution

Cost “to-go" (cont)

o J(t) = IxT()S(t)x(t) + f; ||[R71BTQx — u(t)||, dt for
Lyapunov equation W|th suboptimal feedback; 2x 7 (£)S(t)x(t) dt
for Riccati equation (optimal feedback)

@ In both cases, J is a Lyapunov function; (since) S(t) is positive
definite and the Lyapunov condition is satisfied with positive-definite
Q, J(t) is negative definite for all t; allows us to assess asymptotic
stability through cost function alone
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Riccati eq

y iccati equations
Lya - a e o q q
yapunov equations Analytic solution to algebraic Riccati equation

Hamiltonian matrices

@ Our goal is to find steady-state optimal control &(x(t)) such that
system, if unstable, is stabilized. Need to solve the
PMP-Hamiltonian system.

o Let
0 -
=103 ]
Note J~1=JT = —J.

@ A Hamiltonian matrix H satisfies JHJ = HT

o ]

where B = BT, C = CT, is a Hamiltonian matrix (verify).

@ Any matrix of the form
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Left/right eigenvalues and eigenvectors (of Hamiltonian

matrices)

@ Since Hamiltonian matrices are not symmetric, they can have
complex eigenvalues

@ They will also have left and right eigenvectors, each associated with
the same set of complex eigenvalues

@ A left eigenvector w satisfies wTH = aw’, where w is a scalar

@ Let Hv = A\v, where X is the eigenvalue associated with eigenvector
v. Then

vTHT = 7
vIJTHIT =7
—vTJTH=-x"J"
(J)TH=-\UJv)"
Thus Jv is a left eigenvector of H with eigenvalue —\ (the
eigenvalues thus come in pairs). (note we thus only have to solve for
the right eigenvectors and automatically obtain the left).
@ Note that for a general linear system x = Ax, A will also have

left/right eigenvectors and complex eigenvalues. The (open loop)
system is (asymptotically) stable if all eigenvalues have negative real



Diagonalization of Hamiltonian matrices

@ Based on the above result, the 2N x 2N Hamiltonian matrix H,
when diagonalized, should look like

A1

A [ M
~\1 - -M

,)\N ]

with \; € C.
@ Recall the PMP-Hamiltonian system of 2/ odes was

BIRIE
(t) o(t) |
@ Substitute the expression for H in terms of its eigenvalue matrix,

H = EHDT, where E denotes the matrix whose columns are right
eigenvectors, and D the matrix whose columns are left eigenvectors




Solving for steady-state gain and optimal feedback control

@ Now can solve this ode system with time-invariant Hamiltonian as

0118 ][ ][ F(

@ Since feedback controlled system stable,
D/ x(0) + D], Sx(0) = 0

for all x(0) so that unstable modes do not contribute to the
dynamics; otherwise, x(t) will diverge as t — oo
@ Solving for S,
S = (D) 'Dfy

@ Thus the steady-state feedback gain is
K(0) = R'BTS =R'BT(D))"'D],

and the optimal steady-state control is
u(x(t)) = —K(co)x(t) = —=R~*BT(D3,) "' Dy x(t)



Stabilization of the closed loop system

@ Assuming the system is controllable (depends on A, B) and Q, R
positive definite, the closed loop system with steady-state optimal
feedback is stable irrespective of how many modes (eigenvectors) of
A are unstable.

@ The associated steady-state closed loop matrix A9 = A — BK(c0)
has N stable eigenvalues, which happen to be the N stable
eigenvalues —\p,- -+, — Ay of the Hamiltonian matrix H. The
eigenvectors of A — BK(o0) are the columns of the matrix Ej;.

@ Recall the definition of the open loop transfer function for a single
input (control), single output (observation) system:

~—

y(s _ -1
W =C(sl—A)'B

~—

where Cisl1x Nand Bis N x 1



Riccati equations

Lya i - a e o q q
yapunov equations Analytic solution to algebraic Riccati equation

Stabilization of the closed loop system (cont)

@ The characteristic polynomial of the open loop matrix A is given by
the determinant |s/ — AJ; solve for the poles of the open loop
transfer function

@ The feedback stabilized system, the poles vary as a function of the
elements of @ and R in the cost functional; the plot of the poles
versus these parameters is analogous to the root locus plot in
frequency domain control, where the poles are plotted versus
constant gain parameters to design the controller The closed loop
characteristic polynomial is

sl — A+ BK(c0)]

whose roots all have negative real parts (reside on left half complex
plane).

@ With time-varying state feedback, the poles change over time
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Dynamic programming

Outline

e Dynamic programming
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Dynamic programming formulation of optimal feedback

control

@ Except for linear feedback control, methods we have studied based
on PMP not suitable for feedback control since they provide “open
loop” optimal controls and trajectories based on known initial state
xo; for linear systems, our ansatz ¢(t) = S(t)x(t) was essential for
obtaining state feedback

@ PMP max/minimizes J(0)

o Cost-to-go J(t) does not directly enter PMP formulation; useful to
formulate general nonlinear optimal feedback control law in terms of
cost-to-go

@ Make J a function of x, u, t instead of just u as in original PMP
formulation

@ Recall H = H(x, ¢, u, t)

@ By adding x, t parameters to J, will see we can express Lagrange

multiplier ¢(t) as partial derivative wéz’t); note this is function of ¢
like ¢(t)




Hamilton-Jacobi-Bellman equation

@ Cost-to-go is now expressed as J(x, u, t) rather than J(u, t); let

T
J(x,u,t) = F(x(T), T)+/t L(x(t"), u(t),t') dt’

This is fn of x through x;

@ Then (. 1)
dt, = —L(x(t), u(t), t)

@ For any control and associated trajectory,

dJ(x,t)  0J(x,t) n 9J(x, t) dx

dt ot Ox dt
L 9J(x,t)  9J(x,t) B
== + . f(x,u,t) = —=L(x(t),u(t),t)
0J(x, t) B 0J(x, t)
o = ~Llx(0).u(t). 1) = = f (1)

@ Hamiltonian now defined as
H(x, 2060 1y ) = L(x(t), u(t), t) + 25D f(x, u, t) instead of
H(x, ¢, u, t) = L(x(t), u(t), t) + o7 (t)f(x, u, t)

@ For optimal trajectory,
H(x(t), 228 3(t), 1) = min H(x(t), 2 y(t), t) as before




Dynamic programming

Hamilton-Jacobi-Bellman equation (cont)

@ So HJB equation is

o (x,t) 0J*(x, t)
= _T(It? H(x(t), T(t)’ u(t), t)

where J* denotes the optimal cost-to-go, which we will denote by
simply J

@ Partial differential equation for J(x, t); propagated backward in time
(since t is lower limit of Lagrange integral) from
J(x(T), T)= F(x(T), T) (at all pts on surface of admissible final
states x(T))

@ Note equivalence between costate ¢(t) and %

@ Solve for vector field of extremals T(x, t) rather than a single
optimal control ©(t); vector field of extremals sometimes called
optimal policy (since control conditional on x)

@ Note xp not explicitly specified
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Dynamic programming

Optimal control solution strategy using HJB equation

@ Follow these steps:
@ Set up Hamiltonian as for PMP but with % replacing ¢ (t)

© Use PMP condition % = 0 to express &(t) in terms of ﬂjdi—’tl
(recall previously, we expressed in terms of ¢(t))
© Substitute T(t) into Hamiltonian to obtain m(n)w H(x, u, 222 1)
u(t
@ Write corresponding HJB equation and solve analytically or
numerically for J(x, t); if analytic solution exists, obtain feedback
9J(x,t)

control law (vector field) T(x, t) from u(x, t) = ==
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Dynamic programming

Comparing the Hamilton-Jacobi-Bellman equation with the
PMP

@ HJB replaces ¢ (t) with 22xt)

@ HJB provides u in state feedback form directly
@ Solve a scalar pde with N + 1 independent variables x, t rather than

2N-dim vector ode (PMP-Hamiltonian system) with 1 independent
variable t (latter is two-point boundary value problem)

@ Depending on solution method, PMP may not provide control in
state feedback form; e.g., with L(u(t)) = 1u” (t)Ru(t),
u(t) = BR™1BT ¢(t), not a function of x since ¢(t) not a fn of x
@ For certain integrable problems, e.g., LQR, PMP provides identical
results to HJB since it can provide optimal controls analytically in
feedback form

@ HJB essential for optimal control of stochastic processes (which we
study later) since control must always be formulated in terms of
state feedback
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HJB applied to linear quadratic regulator

@ Derived LQR feedback control law above using state, costate
equations and PMP

@ With minor variations can show HJB gives same result; start with
J(x,t) = $xTS(t)x(t) instead of ¢(t) = S(t)x(t); then
900D — S(t)x(t); G(x, t) = —BR™LBTS(t)x(t) as before

ox(t)
@ Now use HJB equation % = frl?(ltr; H(x(t), Bgf((t’)t), u(t), t):
DT (OS(x(1)] = 3T (B)@x()-

- %(BR’IBTS(t)x(t))TRBR’lBTS(t)x(t)
— [S(t)x(1)]T (A~ BR™'BTS(1))x(t)

subject to J(x(T), T) = 1xT(T)S(T)x(T)

o Simplify and eliminate x(t) to obtain Riccati equation as above
(note: without using adjoint dynamical equation), with terminal
boundary condition S(T)

@ Can solve steady-state case analytically as above



Numerical methods for dynamic programming (discrete

time)

@ For nonlinear problems, typically no analytic solutions to HJB pdes.
Can discretize control, state, and time and apply the following
backwards-time algorithm to find the optimal feedback controls:

J*(x, te) = min_ [L(x, u(x, t), te) At + J*(x + Ax, tyy1)]

u(x,t)

with Ax = f(x, u(x, tx), tx)At and J(x(T), T) = F(x(T), T)
o @ For each ty, find J(x, tx) for all x, by computing J(u, x, t) for all x
© Choose J*(x, t) by choosing the u that gives the lowest cost for
each x
© For each (x, tx) pair you will then have associated optimal cost
J*(x, t«) to be used in subsequent steps
@ Step backwards in time to t,_; and repeat



Dynamic programming

Next time

@ Next time: how to optimally update a state estimate X(t) for a noisy
(stochastic) system based on observations made according to law
y(t) = Cx(t); will find “filtering” equations (Kalman-Bucy
equations) are dual to those for feedback control

@ Ultimately, will combine optimal state estimation and control for
stochastic feedback control
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Review of concepts from classical probability
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Review of concepts from classical probability

© Review of concepts from classical probability
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From probability to statistical inference: Properties of estimators L q q
east squares estimation of parameter vectors

Outline

Q From probability to statistical inference: Properties of estimators
@ Least squares estimation of parameter vectors

CHE 597 Methods for state estimation



Consistency, invariance and asymptotic normality

@ Consistency: An estimator 6™ is consistent for the parameter 6
(written as plim 8™ = 6y) if for every € > 0,

lim Py {|ém — o] > e} = 0.

m—00

@ Invariance: For an invariant estimator, c(6) is c(6™), for a
continuous and continuously differentiable function c(-).

@ Asymptotic Normality. For a sequence of estimators om, i
~ d d
Kkm (9’" — 90) — N(0,X) as m — oo, where — denotes convergence
in distribution and k,, is any function of m, 6™ is said to be

v/ km-consistent for 6 and has an asymptotic normal distribution with
asymptotic covariance matrix X.



Least squares parameter (state) estimation

@ Extending our discussion of observability; goal is to: estimate
(parameters of) state x in presence of noise/random measurement
outcomes, based on m measurements

9 Again use deterministic observation law
y = Cx

(mean observation law), but now assume m x N matrix C has
m > N (enables estimation of all parameters) and add noise such
that

z=y+4+w=C+w,

with w a m-dimensional Gaussian noise vector; z = Cx + w is now
the stochastic observation law

@ Note C is in general not a change of basis even if N x N since not
necc orthogonal (i.e. CCT # 1)



Least squares parameter estimation (cont)

@ If m measurements are iid, matrix C has identical rows and pdfs of
w;'s are identical, and no covariance/correlation between
measurement outcomes

@ Let X denote the estimated state; minimize least squares objective
function of error residuals (sum of squared measurement errors over
all state parameters/components)

1
J=3(z- Cx)7(z - CR)

@ Note this only incorporates information about means y; of
observations through C, no other information about probability
distributions (pdfs) of w components; thus we can only obtain
parameter estimates X (means of estimate distributions if estimator

unbiased), but not their uncertainties

@ Set % = 0 for minim; solve for X
d. d1
d—é = EE(ZTZ —z'cx —§<TCT2+>?TCTC>?)

1
= —E(CTZ +CT2)+CTCcx=0
£=(CTO)"'C'z



From probability to statistical inference: Properties of estimators

Least squares estimation of parameter vectors

@ Thus state estimate is

(CTC)~1CT is called left pseudoinverse of C: compare
(ATA)7LAT = A= for square A; result would be same if we had
deterministic measurements (no noise) and we solved for x from

Cx = z; estimator minimizes mean square error between estimates X;
and corresponding measurement outcomes (CTC)~1CTz + w;
across all

@ Note CTC must be full rank (rank N);

@ For nonlinear observer (nonlinear least squares) must generally solve
for minimum of J numerically; application of optimization to
estimation
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Weighted least squares estimation

@ Incorporates information about variances of observations (e.g., if
pdfs of w; known) in order to provide (estimate of) (co)variance of
parameter estimates X;: ¥ = E[(x — %)(x — X) "]

@ Measurement residual covariance matrix (m x m): R = E[ww ],
assuming zero mean; note if this matrix has nonzero off-diagonal
elements, the measurements are correlated and hence not
independent (and not iid)

@ Each measurement z;/w; has different pdf (assumed to be Gaussian)
with variance Rj;, and covariance between w;, w; is Rj = Rj;

@ For weighted least squares objective fn, let
J=13(z— C&)TR(z — CX); provides greater weights to
measurements with lower variances in providing parameter estimates
and estimator minimizes weighted mean square error between
estimates CX; and corresponding measurement outcomes z; where
weights are proportional to (co)variances



Weighted least squares estimation

@ Setting % = 0 and solving
1
% - iAE(ZTR_lz —ZTRIC% —%TR7ICTz+ 8T CTRCR)
X X
1
= fE(CTR_lzT +CTR'ZN)+ CTR™ICx =0

£=(CTRIC)"IC"R 12

Thus state estimate is X = (CTR™1C)"1CTR~1z; the matrix left
multiplying z is called the weighted left pseudoinverse of C

@ R is consistently estimated by sample covariance of measurements
(residuals); in simplest case is diagonal matrix of inverse weights
when measurements uncorrelated; but note this requires



From probability to statistical inference: Properties of estimators S
Least squares estimation of parameter vectors

Weighted least squares estimation (cont)

@ We obtain an estimate of the covariance matrix of the parameter

estimates as well:
Yy =(C"R71O),

since (£)~1 = CTR™IC; note if Cis N x N identity matrix (each
measurement provides information on exactly one parameter), ¥ = R

@ If the pdfs of w; are Gaussian, and R is the true covariance matrix,
then we obtain the true covariance matrix of parameter estimates
from ¥ = (CTR™1C)!

@ Note that if the pdfs of w; are Gaussian, all information about them
is included within the means y; and the (co)variances Rj; but if not,
information about the stochastic observation law is lost
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From probability to statistical inference: Properties of estimators Least squares estimation of parameter vectors

Dynamic (recursive) linear least squares estimation

@ Now consider successive measurement “sets” z, z, (indexed by
time); and, where the measurement errors and observation law is
changing between sets; for our purposes will assume m
measurements (e.g. z) all made at time t;, though need not be iid

@ As before %1 = (CTRl_lC)*lCTRl_lzl; update to X» with
measurement set z; X» estimate obtained using all info, but
weighting t; and t, measurements appropriately

@ Again formulate least squares objective

o 1 ~ ~ R;l 0 zZ1 — Cl)?z
J = 5[21 — C1X2722 — C2X2] |: 0 R;l :| |: 75 — Cg)?z

@ Write % = 0: by direct extension of above, obtain

%0 =(C/RI'G+ G R G) MG Rz + G Ry ),

@ We are interested in how to update state estimate given new info;
hence want X in terms of X1
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Dynamic (recursive) linear least squares estimation

(GRIGHGR'G) =+ G RG)

@ Apply variant of Sherman-Morrison matrix inversion lemma; recall
(Atu@v)t=A"1_ A A

1-vTA-1y

9 Here,
(A+BTC By = A1 = A'BT(BA"'BT + C)"BA™!
@ Thus
EIPH GRIIG) T = - 4G (GG + R) TG
so

xo = [E1— L1CG (GG + R) LG (G Rtz + G Ry )



From probability to statistical inference: Properties of estimators S
Least squares estimation of parameter vectors

Dynamic (recursive) linear least squares estimation

@ Multiplying the terms in the left bracket with the first term on the
right, obtain %, — L1 G/ (GG + R) 1ok

o Let ;G (GX1G) + Ry) ™! = Ky; thus have % — Ko Gk

@ Doing the same with the second term in the right bracket gives Kyz

@ Thus the recursive least squares state estimate update is
%0 = %1+ Ka(zo — GX1); K is called the Kalman gain for the
estimator; updates estimate based on new observations z

@ In continuous time obtain dfl(tt) = K(t)(z(t) — C(t)x(t)) for a

constant state vector that is measured with time-varying error and
observation law
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Propagation of the state and covariance estimates

(without new observations)

@ Assume we have state estimate X(0) and associated covariance
matrix of state estimates X(0)

@ Now turn on noisy linear dynamics governed by

d

d—j = Ax(t) + Bu(t) + Dn(t)
where n is a N-dimensional white noise vector with covariance
matrix E[nn”] = Q (note this Q differs from that used in
observability analysis)

@ How are the state estimates and covariance matrix propagated
through time given these dynamics? Want %X(t) and X(t)



Propagation of the state and covariance estimates

(without new observations)

@ X(t) follows directly from our formal solution to linear vector ode:
T
R(t) = exp(At)%(0) + / exp[A(t — t')]Bu(t')dt'+
Jo
-
B l / explA(t — t’)]Dn(t’)dt’]
0

-
= exp(At)%(0) + ./0 exp[A(t — t')]Bu(t')dt’

@ For covariance update, omit control for now for simplicity

¥(t) = B(x(t) = (6)(x(t) — 2(1))T] =
.
= E{ l/o exp[A(t — t')]Dn(t")dt’ + exp(At)(x(0) — 9(0))]

* [/0 exp[A(t — t')]Dn(t')dt’ + exp(At)(x(0) — 9((0))1 }



From probability to statistical inference: Properties of estimators Least squares estimation of parameter vectors

Propagation of the state and covariance estimates
(without new observations)

Y (t) = exp(At)Z(0) exp(ATt)+

B { [/Ot explA(t — ¢/)]Dn(¢) dt’} Uotexp[A(t — )|Dn(#) dt’} T}
E{ {/Otexp[A(t —t")]Dn dt'} [/Otexp[A(t —t")]Dn dt'} T} =

= /Ot exp[A(t — t')](Dn)(Dn) " exp[AT (t — t')] dt’
= /t exp[A(t — t')JE[Dnn" D] exp[AT (t — t')] dt/
0

- /t exp[A(t — t')]DQD T exp[AT (t — t')] dt’.
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From probability to statistical inference: Properties of estimators S
Least squares estimation of parameter vectors

Propagation of the state estimate (with new observations)

@ Next time: will look at evolution of state estimate with new
observations z(t):

s
d—j = A%+ K(z — CR)

= (A— KO)X + Kz

@ Note similarity to state feedback form of control law; now using
measurements to update state estimate rather than control the state

@ Recall: observations are dual to controls
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" Adaptive Kalman filte
The Kalman filter daptive Kalman filter

Outline

© The Kalman filter
® Adaptive Kalman filter
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" Adaptive Kalman filte
The Kalman filter daptive Kalman filter

Filtering: optimal state estimation of dynamical systems

@ Since the state covariance of a stochastic dynamical system
increases with time of evolution, “optimal” feedback control based
on state estimate X(t) is prone to error

9 Filtering methods update the state estimate and its covariance
matrix optimally based on additional measurements made during
evolution; based on combination of i) state estimate / covariance
matrix updates in presence of measurements, but absence of
evolution; ii) state estimate / covariance matrix updates in presence
of evolution, but absence of measurements

@ Filters can be based on different estimators for the state and its
covariance; we are studying the simplest, the least squares filter

@ Kalman developed optimal least squares filter for linear dynamical
systems (previously we studied Kalman controllability and
observability rank conditions for linear systems)

@ Applications
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Recursive least squares estimators: from discrete to

continuous time

@ Recall

S — %1 = Ka(z — Goxy);
Yo —21 =KXy

@ Ry in K represents effect of instantaneous measurement noise; now
let us assume that noise enters measurement process continuously,
building over time

@ This is 1st step toward formulating continuous
observations/continuous state update; even though we are still
measuring at discrete times we need a continuous time
representation of our noise



" Adaptive Kalman filte
The Kalman filter daptive Kalman filter

@ Let R(t2) denote the total measurement error (covariance) that has
built up over the interval At due to noise error rate R»; so

1
Ry - —R(t
2= a2
Ryt — R™Y(t)At
@ How to incorporate into expression for Kalman gain:
Ky =YX1G (GG + Ry 7E

Would be useful to have an expression “proportional” to R;l
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Recursive least squares estimators: from discrete to

continuous time

@ Rewrite K> in a form “proportional” to the measurement error
matrix R»

Ko =X1G GG + Ryt
=G (GG Ry P+ DR
=56 R+ GE G Ry
Ko[l + GE1G Ry = Z1GI Ry
Ko=Y1G Ry — Ko GoX G Ry
K= (I — Ko G)X, G Ry !

@ By substituting ¥, = X1 — Ko GY; = (I — Ko G)Xy: we can
eliminate K, on the rhs and get the form of K, that we want:

Ky =Y,C) Ryt

@ Making the substitution Ry, ' — R~1(t,)At, we obtain the form of
the gain we want:

K(t) = X(t2)CT(t2)R(to) 1At



" Adaptive K el
The Kalman filter daptive fiter

Recursive least squares estimators: from discrete to
continuous time

@ Now move to continuous updating of the state estimate by taking
im in K(t) = () CT(t2)R(t2) 1AL
t—o00

dx(t) _ .
= K()[2(1) - C(0)(0)
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Differential equation for state covariance matrix with

propagation but no measurements

@ Recall without measurements,

¥ (t) = exp(At)X(0) exp(AT t)+
+ exp(At)[/.t exp(—At')DQRD " exp(—ATt') dt'] exp(AT t)
0
o Let exp(At)[ [, exp(—At')DQDT exp(—ATt') dt'| exp(ATt) = H(t).
So

dx(t) = Aexp(At)Z(0) exp(AT t)+

dt
exp(At)Z(0) exp(AT t)AT + AH(t) + H(t)AT + DQDT™
= AX(t) + Z(t)AT + DQDT
@ This is for time-invariant A, D, Q; for time-variant A(t), D(t), Q(t),

replace exp(At) with formal propagator U(t); same form obtained

920 byt with time-varying matrices

for on




" Adaptive Kalman filte
The Kalman filter daptive Kalman filter

Differential equation for state covariance matrix with

propagation and measurements

@ Denote the covariance matrix with measurements but without
propagation (dynamics) X;(t) and that without measurements but
with propagation ¥,(t); putting them together and replacing X1, %>
on the rhs w X(t)
dyt2(t)  dy? i d¥?(t)

dt dt dt
—K(t)C(t)X(t) + AX(t) + Z(t)AT + DQDT
= AZ(t) + Z(t)AT + DQDT — X (t)CT ()R (t)C(t)Z(t)

with £(0) = Xo; where we have used K(t) = Z(t)CT(t)R™1(t)
@ Hence with continuous least squares state estimation, obtain a
Riccati equation rather than a Lyapunov equation
@ Again, for time-varying linear systems, replace A, D, Q with

A(t), D(t), Q(t)



" Adaptive Kalman filte
The Kalman filter daptive Kalman filter

Differential equation for state estimate with propagation
and measurements

@ Similarly, we get

dxt2(t)

T = A+ K()[z(t) — C(x(1)]
= A3(t) + 2()CT(ORH(B)[2(1) = C(0)3(1)]
= AX() + () CT (R (B)z(t) = T(6)CT()RH(£)C(£)R (1)
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Kalman filter equations

@ So the Kalman filter equations for optimal updating of the state
estimate and its error during dynamical evolution of a linear system

IXt) _ ax(t) + T(6)CT(RM(t)(t)—
Y(t)CT(t)R™(t)C(t)x(t); %(0) = %o
9E() _ p5(#) + T(0)AT + DQDT
Y(t)CT(t)R7(t)C(t)Z(t); Z(0) = X,

@ Kalman filter minimizes state estimate covariance (mean square
error) by optimally mixing old and new measurements



Duality: Kalman filter equations vis-a-vis linear quadratic

regulator

@ Compare the Kalman filter equations to those for optimal feedback
control of linear systems to obtain a duality:

B _ Ae)(0) + £(0)CT (R (D)2(e) - Z()CT (ORI C(R(0);

dt
%(0) = %o
digt) = A(t)Z(t) + Z()AT (t) + D(t)Q(t)D T (t)-
() CT(R™H(t) C(t)=(t); T(0) = To
dxd(:) — A(t)x(t) — B(t)K()x(2); x(0) = x
= A(t)x(t) = B(t)R™* ()BT (£)S(t)x(1)
%(f) = S()A(t) + AT(£)S(2) + Q(t) — S(1)B(t)R(£)BT (1)S(1)



" Adaptive Kalman filte
The Kalman filter daptive Kalman filter

Duality: Kalman filter equations vis-a-vis linear quadratic
regulator

@ Ignoring the z(t) term, they are dual with the mappings

CT(t) — B(t)
Y(t) — S(t)
R(t) = x(t)

and time reversed for the Riccati equation (in Riccati equation,
duality is more precise with A(t) — AT(t)).
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Adaptive Kalman filter equations

@ Adaptive Kalman filter enables estimation of dynamical parameters
as well as states; updates parameter estimates and their covariances
in real time

@ Let p denote a /-dimensional vector of parameters

@ Dynamical parameters could be elements of the matrices A or D;
i.e., we have A(p) or D(p); we consider the case D(p) because of its
interpretation in terms of the intensity of noise entering the system:
now & = Ax(t) + D(p(t))n(t)

@ Accomplishes this by “augmenting” the state vector x(t) with the
parameters p(t); obtain a N + /-dimensional augmented vector
xa(t) = (x(t), p(t)); assume true p(t) = p(0) although estimate p
will evolve with time

@ The corresponding covariance matrix is then (N + /) x (N + /):

denote X,

@ Want differential equations for X‘d—(:) and zj,(tt)

@ Adaptive filtering introduces nonlinearities in the filtering equations

@ Applications



Adaptive Kalman filter equations

@ The adaptive Kalman filter equations for optimal updating of the
state estimate and its error during dynamical evolution of a linear

system are
da(t) _ d(x(t), B(t))
dt dt

= Aafe(t) + Ta(t) G (£)R;H(8)(2a(t) — %a(1)); %a(0) = Xa,0
) 4,70+ So(OAT + Du(p()Q:D] (3(1)) -

):a(t)CaT(t)Ra_l(t)Ca(t)):a(t)? Y4(0) =Xap0




The Kalman filter Adaptive Kalman filter

Augmented matrices in the adaptive Kalman filter

@ The (N + 1) x (N + /) matrix Q, is block diagonal with an N x N
block equal to @ and the other / x [ block zero

@ The (N+ 1) x (N +1) A, is block diagonal with an N x N block
equal to A and the other / x | block zero

@ The (m+ 1) x (m+ 1) matrix R, is block diagonal with an m x m
block equal to R and the other / x | block zero

@ The (N + /) x m matrix C, has the upper N + / rows equal to C and
the other | rows zero

® %,(0) = (%(0),p(0))
@ Note that the matrix D,(p) in the Riccati equation for X,(t) must

be expressed in terms of the parameter estimates p(t); this increases
the nonlinearity of the differential equation
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Example of adaptive Kalman filter

@ Consider the linear stochastic system

)'q o 1 0 dl 0
R L
@ The parameter values dj, d> are unknown, though we have initial
estimates and a covariance matrix for them

@ The dynamical equation for x;, is

X1 1000 x1 i 0 0 0
2| |0 100 o | [0 d oo
| |00 00 ch o ooolf™
i 0000 d» 0 0 00

@ In the Ricatti equation for the covariance update, we use

N

di f)

N

d> f)

0
D(p(t)) = {
0

O O O o
O O O o

(
0
0
0



Maximum likelihood estimation

Outline

© Maximum likelihood estimation
@ MLE examples
@ Algorithms for MLE estimation
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Maximum likelihood

@ MLE vs least squares: in least squares, can only estimate parameters
that are linear functions of the means of the pdfs of the
observations; in MLE can estimate any parameters that specify the
pdfs for the observations

@ y;'s are means of z pdfs, o;'s are variances; can estimate y/s and
x;'s (latter are linear fns of the y,-’s, but not o;'s, by least squares
theory); MLE provides a theory for estimation of o;'s as well

@ Achieves this by maximizing a function of all the parameters (here y;
or x;'s, 0;'s)

@ By maximizing the log likelihood, the ML estimator minimizes the
Kullback-Leibler distance between the estimated and true probability
distributions.

@ Will show how this allows estimation of the variances o2 in the
expressions z; = y; + w;, where w; ~ N(0,0%) in addition to the
means y;

@ Consider example of iid samples from a univariate Gaussian
distribution: have just one g, one y



Maximum likelihood estimation

Likelihood function; necessary conds for Ihood

@ The likelihood function L(0|z) is the joint density of the sample
defined as a function of the unknown parameter vector 6

o Let z=(z1, -+ ,2zm) be an i.i.d. sample of size m from a population
with probability density function p(z|6) which depends on the
unknown parameter vector 6 whose true value is fy. Typically, the
logarithm of the likelihood function, In L(6|z), is easier to maximize
numerically because of its separability.

@ The value of the parameter vector that maximizes the (log)
likelihood function is called the ML estimator of 6:

gﬂ,_ = arg max L(0|z) = arg max <H p(z110) - - p(zm|9)> ,
SC) vce  \i_j

where © denotes the admissible parameter space.
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Maximum likelihood estimation

Asymptotic efficiency of an estimator

Asymptotically efficient. A sequence of consistent estimators 6m is
asymptotically efficient if 6™ — 6y % N[0, 171(6p)] where

2
1(0) = -E {%{;g'z)}; [/(60)] 7 is called the Cramer-Rao lower bound
(CRB) for consistent estimators.
In practice, can usually use

A 821In L(O™|z
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Example: MLE of Gaussian distribution parameters

@ We now show how to apply MLE to the case discussed above for a
single component state vector, observations of which are distributed
normally; the goal is to estimate the mean yu (as done above by least
squares, called x; or y; above) and also the variance o2 of the
distribution

@ Parameter estimates: mean p of Gaussian distribution; first assume
o2 is known

2 m 1 zi — 2
pleli) = < ovp | 25’]L(u|z)=’_1jlmep[—( L
_ - n L 7(21*,LL)2
InL_;I o 53
dinl(plz) <~z —p
du _Z o2 =0



MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Example: MLE of Gaussian distribution parameters (cont)

@ Parameter estimates: variance o2; now assume mean 1 is known

dinklols) @ [N~y pmm o]

do " do p 2072

m (zi — p)?
o o3

1

m
1=

(zi — M)z

m

%
[
NE

i=1
@ This is just the variance of the observations; note this could not be
obtained directly from least squares theory

o If both g, o2 were simultaneously estimated, would substitute their
estimated rather than true values in the expressions above
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Example: MLE of Gaussian distribution parameters (cont)

@ We compute (asymptotic) /i estimator uncertainty based on Fisher
information:
- -1
d?In L(ulz)] B zm: d p _o?
du? N — du o2 S m

@ Note this is the same result as that used (though not derived) above
in least squares and also coincides with the variance 2 of the
Gaussian distribution itself

@ Also, can show this is equivalent to result obtained from

E |:(_d|n/_(uz))2:| B
d
nw
@ Could even compute uncertainty in the estimate of o2
@ Use MLE for constant state estimation, but we will use LS for
dynamic state estimation because like prev OCT theory minimizes

quadratic objective function and will exploit duality between control
and estimation
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Properties of maximum likelihood estimators

©Q The ML estimator is consistent: plim é\l\n}lL = bp.

©Q The ML estimator is asymptotically normally distributed (and
asymptotically efficient):

Vm [0 — 6ol — N0, 17 (60)],

2
where /(6y) = -E [%{;Z?'X)} .

© The ML estimator of # is invariant; e.g., as in least squares if |
estimate x;'s, obtain y; estimates via y = Cx
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

The need for numerical algorithms

@ In the above examples, we were able to solve the score function
equations for the parameter estimates in closed form.

@ Typically, this is not possible, and the zeroes must be found using
numerical methods.
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Constrained optimization: Lagrange multipliers

@ Many MLE problems require imposition of constraints on
parameters.
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Constrained optimization: Lagrange multipliers

@ Many MLE problems require imposition of constraints on
parameters.

@ Requires constrained optimization, using a Lagrangian function
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Constrained optimization: Lagrange multipliers

@ Many MLE problems require imposition of constraints on
parameters.

@ Requires constrained optimization, using a Lagrangian function

@ Denote the vector of parameters (0, A,v) = t. Finding the
constrained optimum corresponding to this Lagrangian entails
searching for parameters t §; and slack variables «; that render the
gradient vectors VL(#) and a linear combination of V(a;(#) — ;).
j=1,..., N parallel.

CHE 597 Methods for state estimation



MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Algorithms for MLE estimation

There are two common approaches to solving this problem:

Q Minimization of the “sum of squares” (of the first-order conditions)

function )", (6t,) ;

© Finding the roots of the system of nonlinear equatlons = 0 using
the Newton-Raphson (NR) method.

In fact, methods 1) and 2) may be combined to produce a globally
convergent NR algorithm.
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MLE examples
Algorithms for MLE estimation
Maximum likelihood estimation

Newton-Raphson method

The Newton-Raphson method is ideal... Writing % = H(t), the Newton

step for
H(t)=0
is
thew = tolad + 5t7
with 5t = —J~1H, where Jij = % is the Jacobian matrix.
)
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@ Denoting the rows of H by H;, we have: REPLACE W GENERAL
FORM

OL(O,\,v|x) _ 0InL(0]x)

Hi(0) = 50 50 =0, 1<i<N?>—1,
OL(0, A, y|x .
HN2+j—l(9) = % = 31(9) =0, 1<j<N-1,
J
OL(0, A, y|x )
HN2+N+j—2(>\;fY) = w = 2>\J’YJ =01 <J § N —1.

;



@ Denoting the rows of H by H;, we have: REPLACE W GENERAL
FORM

OL(O, A, v|x)  dInL(0]x) ) s
H;(6) 5 5 0, 1<i<N*—1,
OL(O, N\, v|x .
Hieija(0) = % —23(0)=0,1<j<N-1,
j
OL(0, A, y|x )
Hnegingj—o (A y) = % =2\ =01<j<N-L
j

@ In order to faciliate global convergence of the Newton-Raphson
algorithm, the “sum-of-squares” function h = H - H is evaluated
after each iteration, and the step length progressively shortened until
the value of this function is found to decrease (the existence of such
a step length is guaranteed)



MLE examples

Algorithms for MLE estimation
Maximum likelihood estimation

(Provide some further details on NR from Press)
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Intro to stochastic algorithms

Introduction to stochastic search algorithms

@ Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function
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Intro to stochastic algorithms

Introduction to stochastic search algorithms

@ Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function

@ The number of local optima typically increases with the
dimensionality of the parameter space, the nonlinearity of the
objective function and constraints on the objective function
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Intro to stochastic algorithms

Introduction to stochastic search algorithms

@ Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function

@ The number of local optima typically increases with the
dimensionality of the parameter space, the nonlinearity of the
objective function and constraints on the objective function

@ Unlike deterministic algorithms, stochastic search algorithms (SSA's)
do not rely on derivatives of the objective function, but rather only
on the function itself
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Intro to stochastic algorithms

Introduction to stochastic search algorithms

@ Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function

@ The number of local optima typically increases with the
dimensionality of the parameter space, the nonlinearity of the
objective function and constraints on the objective function

@ Unlike deterministic algorithms, stochastic search algorithms (SSA's)
do not rely on derivatives of the objective function, but rather only
on the function itself

@ SSA’s are thus less prone to being trapped in local optima, though
they may converge slowly
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Intro to stochastic algorithms

Introduction to stochastic search algorithms

@ Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function

@ The number of local optima typically increases with the
dimensionality of the parameter space, the nonlinearity of the
objective function and constraints on the objective function

@ Unlike deterministic algorithms, stochastic search algorithms (SSA's)
do not rely on derivatives of the objective function, but rather only
on the function itself

@ SSA’s are thus less prone to being trapped in local optima, though
they may converge slowly

@ SSA’s use a family of “walkers” that randomly traverse the
parameter space, accepting or rejecting moves based on comparison
of objective function values at different points
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Intro to stochastic algorithms

Introduction to stochastic search algorithms

@ Deterministic search algorithms based on the gradient or Hessian
may be trapped in local optima of the objective function

@ The number of local optima typically increases with the
dimensionality of the parameter space, the nonlinearity of the
objective function and constraints on the objective function

@ Unlike deterministic algorithms, stochastic search algorithms (SSA's)
do not rely on derivatives of the objective function, but rather only
on the function itself

@ SSA’s are thus less prone to being trapped in local optima, though
they may converge slowly

@ SSA’s use a family of “walkers” that randomly traverse the
parameter space, accepting or rejecting moves based on comparison
of objective function values at different points

@ Depending on the ruggedness of the objective function, either
deterministic, hybrid deterministic/stochastic, or stochastic
algorithms may be used
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Review of classical probability

Expectation, (co)variance, correlation

@ A random variable is a map M : X — R, where X is called the
sample or state space

@ Expectation of a random variable: E[a] = (a) = [, ap(a) da
Sample mean: ZI | 5
@ Covariance of random variables a and b:

Ja Je(a = (@)(b— (b))p(a, b) da db
The covariance matrix of a multivariate random vector x (sample
space is vector space) is

E[(x — (x))(x = (x))"] = /);(X — () (x = ()T p(x)dx
@ Correlation of random variables a and b:

Cor(a,b) = ——=2&b)_ | o a2 “normalized” covariance.
y/ Var(a)y/Var(b
(ai=3)(bi—b)
Ny/¥ (@i =3) /N3, (bi—B)? /N
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Review of classical probability

Statistical (in)dependence and conditional distributions

@ Joint distribution of random variables a and b: p(a, b)
@ Independently distributed: p(a, b) = p(a)p(b)
@ Independently and identically distributed:
p(a, b) = p(a)p(b) = p(a)p(a)
9 Conditional distribution of random variable a given b:

p(a,b)
p(alb) = by

@ Marginal (unconditional) distribution of random variable a (in a
multivariate distribution): [; p(a, b) db

@ Bayes' rule: p(alb) = %
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Stochastic processes

Stochastic processes: definitions

@ A stochastic sequence (discrete time stochastic process) is a
sequence (indexed set) of random variables, i.e.
x(t), i=1,2,3,---, where each x(t;) is a random variable and
where the index set is countable.

@ A continuous time stochastic process is one where the index set is
uncountable (e.g., t € [0, T]).
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Stochastic processes (cont)

@ Stationary (ergodic) stochastic process:
p(x(t)) = p(x(t')) = n(x),Vt > t’; there is a unique unconditional
distribution, which is called the stationary distribution, to which the
unconditional density converges over time.

@ Nonstationary stochastic process: may be different distribution
functions p(x(t)) at different times ¢: no unique unconditional
distribution.

@ Autocovariance:

~ BN (() — Bulx(£)]] =
/ / M) — x(EN)p(x(), X(2)) dx(t) dx(t'), &> ¢

@ Autocorrelation:

El[(x(t) = <X(t)>)(X(t’)* (x(t")
fx fx = x(t))(x(t") — x(




Stochastic processes

Stochastic processes (stationary)

@ For a sp that has converged to stationarity, joint distribution
p(x(t), x(t")) only depends on t — ¢t/

@ An ergodic sp can also be represented by an ensemble of chains; at
any given time this ensemble is characterized by an unconditional
distribution function p(x(t)) (frequency of walkers in state x at time
t), which may not be the stationary distribution, depending on each
chain’s initial state x(to)

@ White noise stationary sp: autocorrelation 0 for all t’ # t; for
Gaussian white noise, conditional and unconditional probabilities
equal, i.e., p(x(t)|x(t")) = p(x(t)), t >t/
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Autoregressive and Markov processes

Markov chains

@ For algorithms, we will be most interested in discrete time sp's
@ A general (discrete time) vector autoregressive process of order n
can be written:

X(tiy1) = Arx(t;) + Aox(ti—1) 4 - - + Anx(ti—ny1) + Qu(tiy1)
uj+1 denotes a zero-mean n-variate white noise, and RRT=Q7Q
denotes the covariance matrix if u(t;) each have unit standard
deviation

@ A Markov process is a discrete time autoregressive process of order 1
(compare first-order deterministic differential equation), i.e.,

x(ti+1) = Ax(t;) + Qu(ti+1)(this equation is called a stochastic

difference equation).

@ A Markov chain path is a sequence of points (x(t1), ..., x(tm))
(draws) corresponding to a Markov process.

@ In general a Markov process is not stationary

@ From here on, we will use the notation x(t;) = x; (note we are not
referring to vector component indices with this subscript)
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Autoregressive and Markov processes

Markov chain transition rules, matrices

@ For Markov chains on discrete state spaces, a transition matrix
defines the conditional probability of the various possible states at
time t =/ + 1 depending on the state at time t = /.

@ An example of a transition probability matrix (also called a
stochastic matrix) for a 3-d state space is:

0.5 05 0.25
P=102> 0 025
025 05 05

@ The transition matrix must have columns summing to one, and
operates on either state vectors or probability vectors (those with
elements summing to one).

@ For a discrete state space, a state vector is of the form
x=(0,---,1,---,0)7

@ Eigenvectors and eigenvalues of P are important for characterizing
dynamics: these need not be probability vectors.
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Chapman-Kolmogorov equation

@ When P operates on a state vector, the result is a conditional
probability :Px; = P(x;+1|x;); when P operates on an
(unconditional) probability vector, the result is an unconditional
probability: Pp(x;) = p(xit+1)

@ This is called the Chapman-Kolmogorov equation for evolution of
the marginal distribution associated with a stochastic process

@ For Markov chains on continuous state spaces (supports), we have a
transition rule which takes the form of a function p(x1|x2); the
requirement of columns summing to one is equivalent to
Jx p(xalx) dx =1

@ For continuous state space:

p(xn) = /XP(Xn|Xn—1)/XP(Xn—1|Xn—2) te
: '/XP(X1|X0) p(xo)dxo - - - dxp—2 dXp_1

@ For discrete state space: p(x,) = P"p(x0), with P" a stochastic
matrix



Sufficient conditions for ergodicity

@ Compare the Kolmogorov equation to the action of the discrete time
dynamical propagator for deterministic dynamical systems (e.g.,
quantum systems): U(t,) = V(ta—1)V(ta—1)--- V(to). Recall each
V/(t;) is identical for a time-independent Hamiltonian; compare P".

@ Conditions (on P) for ergodicity:

@ Irreducible: P has one unit eigenvalue A\; = 1 (unique stationary
distribution)

Q Aperiodic: P does not have any eigenvalues A = —1 (equilibria are
stable, so system does not oscillate between states in infinite time
limit).



Sufficient conditions for ergodicity: continuous

distributions

@ It can be shown that any scalar Markov process whose stochastic
difference equation is x;11 = ax; + qui+1 with |a| =1 is
nonstationary (random walk), with a = 1 violating irreducibility and
a = —1 violating aperiodicity; moreover, a sufficient condition for
ergodicity is that |a] < 1.

@ For continuous state spaces (still discrete time), transition operator
is an integral operator and its eigenvalue spectrum (hence
convergence rate) is more difficult to determine analytically.

@ a is generally not directly known

@ However, there is a convenient condition for stationarity expressed in
terms of the transition probabilities p(x;|x;) and the unconditional
distribution 7(x).

@ Any Markov chain that satisfies the detailed balance condition
p(xe|xi)m(x1) = p(x1|x2)7(x2), where 7(x;) denotes the stationary
distribution and p(x2|x1) denotes an element of the transition matrix
(transition probability for continuous state spaces), is ergodic.



Sufficient conditions for ergodicity (cont)

@ The detailed balance condition implies

p(x:) = /X p(alxa)m(x1) dxy = w(xa./x p(xalx) dat = (%)

for continuous state space, i.e., if the unconditional distribution for x
at time t = 1 was m(x), then the unconditional distribution at time
t =2 is also 7(x)

@ This shows m(x) is an eigenvector of the transition probability

operator with eigenvalue 1; we will not prove convergence to this
distribution

@ Convergence to stationarity occurs in the infinite time limit for
continuous state spaces; for discrete state spaces, convergence can
occur in finite time: need P"p(xp); then columns of P" are nothing
but the stationary distribution 7(x) and Pl = PP" = P".



Autocorrelation of stationary Markov processes

@ Since E[xi_1uj] = E[x;_1]E[uj] = 0, for a Markov process that has
converged to stationarity the 1st-order autocorrelation function
(omitting the means and scale factors)

E[XITX,',l] = E[(AX,' 1+ QU')TX,' 1]
= E[(Axi—1) " xi1] + E[(Qui) "xi—1]
= E[(Axi-1)"xi-1]

@ In the scalar case, with |a] < 1, for the k — th order autocorrelation
function (lag k), we have

E[xixi—«] = a* 'E[x_ky1x-k] = aE[x? 4]

; i.e. the acf decays geometrically with k (time)

@ Note that for a stationary Markov process, klim act (t; — ti—x) = 0.
— 00



Autoregressive and Markov processes

Stationary Markov process: mixing rate

@ For a stationary Markov process, we have lim p(x;) = m(x).
11— 00

@ The mixing rate of a Markov process is the rate at which the limit is
approached

@ The critical value of k at which the acf decays to approximately 0 is
related to the mixing time for the Markov process

@ Note that the decay of the autocorrelation function with lag depends
only on a, but the mixing time also depends on the noise/error term
u; since that also contributes to the eigenvalue spectrum of the
transition operator P

@ But, by estimating the autocorrelation function numerically, one can
obtain insight into the mixing rate/time
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Monte Carlo sampling: introduction

@ The simplest stochastic search algorithm is Monte Carlo (MC)
sampling
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Monte Carlo sampling: introduction

@ The simplest stochastic search algorithm is Monte Carlo (MC)
sampling

@ MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these

points into the integral or search trajectory based on the function
values at those points
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Monte Carlo sampling: introduction

@ The simplest stochastic search algorithm is Monte Carlo (MC)
sampling

@ MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points

@ a) is achieved by sampling from a proposal distribution
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Monte Carlo sampling: introduction

@ The simplest stochastic search algorithm is Monte Carlo (MC)
sampling

@ MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points

@ a) is achieved by sampling from a proposal distribution

@ In the Metropolis algorithm (discussed further in 2nd half of term),
the proposal distribution is (typically) a function of the difference
between the current point and the previously sampled point, i.e.,
q(xit1 — x); a typical form is
q(xit1 —x) = = exp[ =3 (xi41 — x7)].
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Monte Carlo sampling: introduction

@ The simplest stochastic search algorithm is Monte Carlo (MC)
sampling

@ MC methods integrate or optimize functions based on a) generation
of random points in the parameter space b) incorporation of these
points into the integral or search trajectory based on the function
values at those points

@ a) is achieved by sampling from a proposal distribution

@ In the Metropolis algorithm (discussed further in 2nd half of term),
the proposal distribution is (typically) a function of the difference
between the current point and the previously sampled point, i.e.,
q(xit1 — x); a typical form is
q(xit1 — xi) = \/%—W eXp[_%(Xi—H - x)?].

@ The aim of MC is to sample, through correlated sequential draws,
from a stationary unconditional distribution w(x) that is otherwise
difficult for impossible to sample
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Monte Carlo Methods

Metropolis-Hastings MC sampling

@ In Metropolis-Hastings sampling, the acceptance probability of a
move x; — Xo IS

7r(><2)CI(><1|><2)]

a(x1, x2) = min {1, 7(x1)q(x|x1)

(Metropolis sampling omits the factor %, which =1 for a
symmetric proposal distribution)

@ A common choice for (x) is exp{—7&f(x)} where 8 = & is an
adjustable parameter called the inverse temperature in analogy with

thermodynamics; thus obtain

min l,exp{—%[f(xﬁl) — f(x)]}
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Monte Carlo Methods

Metropolis-Hastings MC sampling

@ In Metropolis-Hastings sampling, the acceptance probability of a
move x; — Xo IS

7r(><2)CI(><1|><2)]

a(x1, x2) = min {1, 7(x1)q(x|x1)

(Metropolis sampling omits the factor %, which =1 for a
symmetric proposal distribution)

@ A common choice for (x) is exp{—7&f(x)} where 8 = & is an
adjustable parameter called the inverse temperature in analogy with

thermodynamics; thus obtain

min l,exp{—%[f(xﬁl) — f(x)]}
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Monte Carlo Methods

Metropolis-Hastings MC sampling

@ In Metropolis-Hastings sampling, the acceptance probability of a
move x; — Xo IS

7r(><2)CI(><1|><2)]

a(x1, x2) = min {1, 7(x1)q(x|x1)

(Metropolis sampling omits the factor %, which =1 for a
symmetric proposal distribution)

@ A common choice for (x) is exp{—7&f(x)} where 8 = & is an
adjustable parameter called the inverse temperature in analogy with

thermodynamics; thus obtain
. 1
min 17eXp{—ﬁ[f(Xj+l) —f(x)]}

@ The M-H transition probability p(x2|x1) = g(x2|x1)a(x1, x2) satisfies
the detailed balance principle and hence the chain converges to
stationarity
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Monte Carlo Methods

Metropolis-Hastings MC sampling satisfies detailed balance

@ Need to show 7(x1)p(x2|x1) = 7(x2)p(x1|x2)

@ We have p(xa|x1) = q(xa|x1)a(x1, x2)

m(x1)q(xe|x1)a(x1, x2) = min [7(x1)q(xe[x1), m(x2)q(x1|x2)]
min [(x2)q(x1[x2), m(x1)q(x2[x1)]

= m(x2)q(x1x2)a(x2, x1)
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Monte Carlo sampling as an optimization algorithm

@ With fixed 3, Metropolis MC chains converge to draws from the
stationary distribution 7(x) = exp{—f(x)}

@ Lower 3 drive the search towards lower values of f(x); higher
increase the probability of transitions to higher values of f(x)

@ There is thus a finite probability of escaping local optima while
minimizing f(x) for MC search, unlike gradient-based optimization

@ Can be used on either discrete or continuous parameter spaces,
unlike gradient optimization

@ Test whether the system has reached equilibrium/stationarity at
given 8 by (i) (if running one chain) checking geometric decay of
autocorrelation function; (ii) (if running m multiple chains in
parallel) comparing unconditional variance o2 of each parameter x;:
02 = 15" (x; — X;)? within a chain to that between chains indexed

m £Lj i

) N2
by j: £ (>'<IJ -1 ->'<J-) . At stationarity, they should be

approximately the same for runs with large number of iterations n.



Monte Carlo sampling as an optimization algorithm

@ With fixed 3, Metropolis MC chains converge to draws from the
stationary distribution 7(x) = exp{—f(x)}

@ Lower 3 drive the search towards lower values of f(x); higher
increase the probability of transitions to higher values of f(x)

@ There is thus a finite probability of escaping local optima while
minimizing f(x) for MC search, unlike gradient-based optimization

@ Can be used on either discrete or continuous parameter spaces,
unlike gradient optimization

@ Test whether the system has reached equilibrium/stationarity at
given 8 by (i) (if running one chain) checking geometric decay of
autocorrelation function; (ii) (if running m multiple chains in
parallel) comparing unconditional variance o2 of each parameter x;:
02 = 15" (x; — X;)? within a chain to that between chains indexed

m £Lj i

. N2
by j: £ (>'<IJ -1 ->'<J-) . At stationarity, they should be
approximately the same for runs with large number of iterations n.

@ Latter method helps assess convergence to stationary distributions
with multiple peaks. Early on, within-chain variance will be smaller
than (scaled) between-chain variance because of high correlation
between successive steps
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only want to encourage thorough sampling of the landscape; walks
are already “biased” toward lower values of f



Simulated annealing

]

Convergence to the stationary distribution can be extremely slow for
multimodal stationary distributions m(x) (equivalently, functions
f(x) with multiple local optima when using 7(x) = exp{—03f(x)})
MC simulated annealing mimics the process of “slow cooling” that
nature uses to escape local optima in molecular energy functions
Simulated annealing either a) gradually increases 3 (lowers T) over
a range [f2, 81]; or b) repeatedly cycles 8 between [52, 1]

@ Equilibrate at each

Can run multiple walkers in parallel from random initial guesses,
discarding those at each temperature that display low variance
(indicative of traps)

Do not artificially select walkers based on their values of the
objective function f(x), since the function may be rugged and we
only want to encourage thorough sampling of the landscape; walks
are already “biased” toward lower values of f

Assess convergence to global maximum / stationary distribution by
(i) number of times same local maxima are resampled, starting from
different initial conditions (different chains); or (ii) comparing
between- and within-chain variances (which should gradually align
with cooling)



Setting the proposal covariance matrix

@ The proposal distribution

P(Xi+1 - Xi)

is typically taken to be a multivariate normal distribution.

@ A general multivariate normal distribution can be written
1 _
p(x) = Cexp | =5 (x = (x)) =7 (x = (x)

where ¥ denotes the N x N covariance matrix, (x) denotes the
mean vector, x denotes the vector of random variables, and

n/2 -1
C=(z)""I=I2

@ For the Gaussian proposal distribution, (x) is taken to be the current
parameter vector



Markov Chai onte C
Monte Carlo simulated

Monte Carlo Methods

Numerical methods for sampling from probability
distributions

]

Transformation methods for drawing from nonstandard pdf p(y) rely
on choosing function x = f(y) and drawing from p(x)

@ Since infinitesimal area element under each pdf must be conserved,
p(y)dy = p(x)dx or p(y) = p(x) Z—;; choice of p(x) specifies f(y)

@ Let p(x) = U(0,1) (uniform distribution between 0 and 1); what is
f(y)?

@ Then p(y) = Z—;; and x = P(y), where P(y) is indefinite integral of
p(y)

@ Then y = P~1(x); draws from U(0, 1) can be converted to draws

from p(y) if P71(x) can be computed
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Monte Carlo Methods

Numerical methods for sampling from multivariate
probability distributions (cont)

@ For multivariate distributions p(y1,--- , yn), let x = f(y) denote a
system of n nonlinear equations in the y;

@ Then p(y1,---,¥n) = p(x1,- - ,%n) |J(¥)|, where the determinant of
the Jacobian of the transformation (J; = g—;}{) represents the scaling
factor for transformation of volume elements
dxi, -+ ,dXn; dyi, -, dy,.

@ Simplfies when f is linear transformation
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Monte Carlo Methods

Sampling from the multivariate Gaussian proposal
distribution

@ Two approaches can be used to draw from such a distribution
(transformation methods): (i) Cholesky decomposition, ¥ = QQT
(Q is lower triangular for any symmetric ¥; possibly on homework),
with X,-+1 = X; + Qu;, where u; is a multivariate Gaussian “white
noise” process with unit variance, or (||) eigenvector decomposition
Y = 0X07, with X,+1 = X; + v;, where v; has variances equal to
the diagonal elemetns of 3, followed by rotation back to the original
basis

@ Note that here, only a linear transformation of x is necessary since it
is possible to sample directly from univariate Gaussians
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Monte Carlo Methods

Rejection sampling

@ Choose a “comparison function” f(x) > p(x)

@ Use transformation method to sample x from f(x) using uniform
sampling of x

@ Draw uniformly in interval [0, f(x)] and accept if below p(x), reject
if above p(x)

@ Above method is equivalent to sampling from p(x), although may
be computationally inefficient based on how close f(x) and p(x) are
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Monte Carlo Methods

Setting the proposal covariance matrix (cont)

@ The covariance ¥, and hence @, can be set “adaptively”: let S,
denote the sample covariance matrix over the last n steps; then let
znew = azo/d + (1 - a)sn

@ This allows the algorithm to “learn” the topography of the
landscape by favoring trial moves that step in the directions that
have been accepted previously

@ This method can be used to facilitate convergence; if the
autocorrelation function is decaying too slowly,

@ Note that this adaptation constitutes control of the evolution of the
stochastic difference equation (to accelerate the evolution of the
Kolmogorov system to a fixed point) by modulation of the noise term
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Setting the annealing schedule

@ Compute the heat capacity to determine the ideal annealing
(cooling) schedule, based only on statistics at current temperature
T:

C(T) = S (E)(T)

d
_d Z,.E,-exp(E,-/kT)l
o dT > exp( %)

= % [% Z E; exp(—E;/kT)(Z exp(—E;/kT))—
d
_ Z Erexp(—Ei/KT) = Z exp(E,-/kT)]

1 2 2
—[(E?) — (E)?
@ If the heat capacity is sharply rising between successive
temperatures, reduce the annealing rate to avoid becoming trapped
in a local optimum.
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Stochastic processes: from discrete to continuous time

@ In the stochastic process lectures we studied dynamics in discrete
time:
Xk+1 — Xk = Axx + Dnyyq

where nj, was called a N-variate white noise vector

@ Consider case with A = 0:
Xk+1 — Xk = Dnyyq;

the corresponding stochastic process x is called a Wiener process,
Brownian motion or a random walk

@ However for filtering we subsequently worked in continuous time, in

order to connect with our previous results on continuous time linear
dx

dynamical systems; we wrote & = Ax(t) + Dn(t) For A=0,

dx

E = Dn(t)



Stochastic differential equations (sdes)

@ The Brownian motion in continuous time is x(t). Rigorously,
though, the continuous time white noise n(t) does not exist, since
x(t) can change position by a finite amount instantaneously and
hence is not differentiable

@ Stochastic differential equations are thus properly written
dx(t) = Dn(t)dt or more generally

dx(t) = Ax(t) dt + D n(t)dt = Ax(t) dt + D dw(t)

where dw(t) o v/ dt (the constant vector of proportionality is a
standard deviation vector)

@ The definition of dw(t) in terms of v/dt rather than dt avoids the
problem of singularity in the derivative and avoids continuous time
white noise; since V/dt is larger than dt, it is not infinitesimally small



Further details on stochastic processes

Stochastic differential equations (cont)

@ Practically, the important point is that when one computes
E[dw(t)dwT (t)], one obtains

E[dw(t)dwT (t)] = N(t) dt

where N(t) is a covariance matrix (previously called @ but now
because mixing estimation and control @ will be used in OCT cost
functional); note the dt arises from two factors of dw(t); thus the
variance of the increment of Brownian motion is infinitesimally
small, even though the increment itself may not be

@ We can continue to use our old notation of continuous time white
noise, as long as we recognize:

E[n(t)dt n" (t)dt] = N(t) dt;

since we always integrate over time for our solutions, we will replace
stochastic differential equations with ordinary differential equations
bearing this rule of stochastic calculus in mind
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Stochastic optimal control objectives

@ For stochastic dynamics, can no longer aim to drive the system to a
precise final state

@ Goal: to control moments of a deterministic cost functional
(cost-to-go): e.g. its (unconditional) mean (expectation value) or its
variance; we focus on mean:

minE [F(x( ) + % /OTXT(t)Q(t)x(t) +uT (R(D)u(t) dt

@ The dynamical constraint for optimization is now a stochastic
differential equation

@ Optimal control must always be expressed in feedback form u(x(t))
or u(x(t))



Stochastic optimal control: with and without filtering

@ Two different frameworks:

@ Direct observation of the state - e.g. y = Cx observation law with
rank C > N (here conditional covariance matrix X comes from
dynamical noise alone)

© Noisy observation of the state - if linear observer, z = Cx + w
(example: quantum observations through (©) = Tr(p(t)®©), where
p(t) is state)

@ Case 1: despite noisy dynamics, at any given time apply the optimal
O(x(t)) since we can observe the state directly

@ Case 2: requires a method of filtering to obtain X(t) for the
feedback law and then combine control with filtering for T(X(t))
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Stochastic HJB partial differential equation

@ Recall deterministic HJB equation:

0J*(x, t) .
——— = —min H(x(t), ———,u
ot u(t) (x(2), Ox(t)
@ Consider case with direct measurement of state at each time x(t)
@ Stochastic HIB equation has an additional term that is a function of
the process noise covariance matrix DNDT
@ For stochastic systems, need to do second order expansion: will find

second order term will contribute to %



Stochastic HJB pde (cont)

dJ(x,t) _ 0J(x,t)

0J(x, t)
dt ot Ox

+ L(x(t), u(t),t) +

(f + Dn(t))+

4 28+ 0n() 2050 ¢ 4 Do)
B [%} - E[L(x(t), u(t), £) + %(r‘ + Dn(t))~
- 3+ 0n(e)" L5+ Do)
20— utrteate). ) + 2| -
- 2erm 220D D)7 ()07
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Stochastic HJB pde (cont)

Xt 0J*(x, t)
— = —m(|r)1 H(x(t), u(t), “ox t)—

— —E[T [ Dn(t)n" (t)D"]]dt

. 0J*(x, t)
= — H —_— —
min Hx(#), u(t), =5 —1)
1. .0%J%(x,t)
> 1l Ox?

) DE[n(t)n" (¢)]DT]dt

oI () 0" (x 1)
= —m(|r)1 H(x(t), u(t), “ox t)]—

82J*(x )

—T [ DN(t)D]

since E[n(t)nT (t)]dt = N(t) for continuous-time white noise
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Linear-quadratic stochastic optimal control problems: no

filtering

@ As in deterministic case start with ansatz J(x, t) = 3x7(£)S(t)x(t)
but add stochastic increment ftT Tr[S(t')N(t')DT] dt’
@ Substitute into HJB equation:

OJ0Gt) _ in H(x(2), u(), 2 D)

gy nin v t) + Tr[S(t)DN(t)D "]

- %(R*lBTS(t)x(t))TR(RﬂBTS(t)x(t))

—[S(t)x(t)]T (A — BRTBT S(t))x(t) + Tr[S(t)DN(t)DT]

subject to J*(x(T), T) = ixT(T)S(T)x(T)



Linear stochastic optimal control (without filtering)

Stochastic optimal control without filtering

@ Now derive Riccati equation:

%[XT(t)S(t)X(t)] + Tr[S(r)DQ(t)DT] =

- %XT(t)[ATS(t) +S(t)A+ Q — S(t)BRTIBT S(t)]x(t)—
— Tr[S(t)DQ(t)DT] + Tr[S(t)DN(t)D ]
_ —%XT(t)[ATS(t) + S(HA+ Q — S()BR BT S(1)]x(t)+
+ Tr[S(t)DN(t)DT]
S(t)=—ATS(t) — S(t)A— Q + S(t)BR™BT S(t)
o Time-varying state-feedback control law:

a(x(t)) = —~RBT S(t)x(t)
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Filtrations

@ When the state must be estimated based on noisy measurements,
optimal decisions/controls must be based on the information set at
any given time t:

I(t07 t) = (Z(th t)v U(to, t))

, i.e. conditional (conditioned) on all past observations; this is also
referred to as a filtration

o Filters (e.g. Kalman filter) are used to translate the filtration
Z(to, t) into derived state and covariance estimate histories; these
histories constitute the derived information set
Ip(to, t) = (X(to, t), X(to, t)) which is used by the controller (note
this is dependent on the type of estimator/filter used); we will use
the notations Z and Zp interchangeably

~

@ For a Markovian stochastic process, Z(ty, t) = Z(t) = (xX(t), X(t))
since the future evolution depends explicitly only on the the current
state and covariance matrix



Linear stochastic optimal control problems with filtering

@ Linear stochastic control problem analogous to LQR, with process as
well as measurement uncertainty, is called linear quadratic gaussian
regulator (LQG regulator)

@ Write expected cost function given incomplete information set
(filtration):

= E{E xT(T)S(T)x(T)|Z(t)] +
T
+ /0 E [x7(£)Q(t)x(t) + u” (t)R(t)u(t)|Z(t)] dt}
T
= E{Tr[S(T)x(T)xT(T)|I( T)] + / Te[Q(1)x(1)x 7 ()| Z(£)]+

Te[R(t)u(t)u’ (t)] dt}



Linear stochastic optimal control with filtering
Stochastic optimal control with filtering

Linear stochastic optimal control problems with filtering
(cont)

@ Note that E[x(t)x(t)|Z(t)] appears in the cost functional; rewrite
this in terms of

¥ = B[(x(t) — () (x(t) — %(1))"[Z(1)]
] = 2B[x(t)*7 (1)|Z(1)] + E[R(DX(1)|Z(1)])
] = EX(6)%(1)|Z(1)]

@ So E[x(t)x(t)|Z(t)] = Z(t) + x(t)x(t)

~— ~—
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@ Thus
2E[J] = E{Tr[S(T))?(T))?T(T)] + Te[S(T)Z(T)]+

+ /O Tr[Q(1)%(1)& T (£)] + Tr[R(t)u(t)u (£)] + Tr[Q(t)X(t)] dt}
:E{Tr[S(T))?(T))?T(T)]Jr/O Tr[Q(t)%(t)% T (¢)]+

Te[R(E)u(t)uT (¢)] dt} +E{Tr[5(T)Z(T)]+ /0 TQ(E)Z(8)] dt}

=Jce+ Js

@ Jcg is called “certainty-equivalent” cost functional; note it is same
as stochastic cost functional with but with x replaced by X

@ For the control systems we are studying, control does not affect Js -
can formulate optimization problem based only on minimization of
Jce (however, in certain applications X(t) can be controlled)

@ Covariance matrix X includes contributions from both estimation
error and noisy dynamics
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Certainty-equivalence principle for linear Gaussian systems

@ Recall dynamical constraint for deterministic LQR controller was
dx(t)
dt

whereas dynamical constraint for stochastic system with direct state
observation was

= Ax(t) + Bu(t),

d’;(:) — Ax(t) + Bu(t) + Dn(t)
@ Dynamical constraint for LQG controller is
%(tt) = AX(t) + Bu(t) + Ke(t)(z(t) — C(2)x(1));

control problem is m(ir)1JCE subject to this constraint
u(t

~

@ Note that in expectation, the term K (t)(z(t) — C(t)X(t)) is
distributed normally with mean zero, just like Dn(t) in stochastic
control with direct state observation; thus Riccati equation is
identical and doesn't depend on X(t) or X(t)

@ The feedback controller Riccati equation is (propagated backward in
time from S(T)):

dS(t)

2 = —ATS — SA— Q+ S(t)BK.(t)
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Certainty-equivalence principle for linear Gaussian systems
(cont)

@ Certainty-equivalence means that the control problem can be solved
as if the state X(t) were directly observed

@ The optimal feedback control is T(%(t)) = R™1BT S(t)x(t)

@ The state estimate X(t) is continuously updated through the
Kalman filter Riccati equation

@ Implementation steps:

@ Solve controller Riccati equation by backwards propagation from
S(T) (appears in cost functional)

@ Propagate £t = A%(t) + Bu(%(1)) + Ke(t)(2(t) — C(£)X(t))
forward from %(0), simultaneously with propagation of filter Riccati
equation forward from %(0)
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Solving nonlinear stochastic optimal control problems with

noisy measurements

@ HJB solution method presented above assumes state can be
observed directly without error; this allows us to replace
E[J(x(t), t)] with J(x(t), t) and similarly E[x(t)] with its known
values at all times

@ For nonlinear systems with measurement error,
E[J(x(T), T)] = E[F(x(T))] not known with certainty and depends
on measurements made over all time [0, T]

@ Thus filter, which is integrated forward in time, is coupled, and both
cannot be solved simultaneously

@ For linear systems, decoupling of estimator from controller occurs;
for nonlinear systems, generally not possible and error is incurred by
assuming information set up to time t is sufficiently similar to
information set over all time

@ Filter determines the filtration forward in time, while the controller
(HJB solution) determines the optimal state-dependent feedback
laws backward in time



Solving nonlinear stochastic optimal control problems with

noisy measurements

@ Decoupling for linear systems occurs because )i(t) Riccati equation
is unaffected by control u(t); thus controller Riccati equation can be
solved first, backwards from S(T), while filter Ricatti equation
(covariance update) can be solved separately; note ¥(t) is required

K

@ LQG derivation relies on equivalence between dynamical constraint
including filter and linear Markovian sde (like that used in LQR
derivation); in expectation the noise (innovation) term does not
appear hence optimal T(X(t)) law is identical to that for LQR and
controller gain can be computed offline

t .
) but not vice versa

for integration of

@ For nonlinear systems u(t) can affect X(t)
@ Even if we ignore this we still need to solve HJB equation



Neighboring optimal (perturbative) feedback control

@ We have seen that solving for optimal feedback controls for
nonlinear (stochastic) systems is difficult; require HJB pde solution
for field of extremals; but these are most common circumstance

@ Neighboring optimal methods are based on linearization of system
around deterministic trajectory - can apply linear estimation and
control methodology locally

@ Preliminary steps:

o
o

Solve for optimal controls in absence of measurements or noise for
nonlinear system (need not be expressed in feedback form; use PMP)

Now linearize nonlinear system around the reference trajectory:
of
A(t) = =—[&(t), ur(t), t],
(t) = o [ (1), ur(t), 1]

B(t) = 5 [5(8), (1), 1
Note this means to substitute the optimal state and control
trajectories X-(t), u,(t) in after analytic differentiations of nonlinear
vector functions f; although the resulting expressions A(t), B(t) will
not be analytic, they can be used in numerical integration of the
corresponding Riccati equations
Define deviation variables
AX(t) = %(t) — %(¢t), Au(t) = u(t) — u(t)



Neighboring optimal feedback control methods (cont)

@ Filtering and control steps:
@ Solve the corresponding linear feedback control problem by
integrating Riccati equations for controller and filter and updating
deviation AX(t) based on observations. Cost functional:

FAS(T)) + /OT AST(£)QAX(E) + AuT(H)RAu(t) dt

@ Optimization of this cost functional subject to the linearized
dynamical constraint

Ax(t) = A(t)AR(t) + B(t)Au(t) + Ke(t)[z(t) — C(t)A%(t)]

provides the Riccati equation above for LQG
@ Solve the corresponding linear filtering problem by integrating the
filter Riccati equation:

> (t) = A(t)Z(t) + Z(t)AT(t) + DEDT — X (t)CT R (t)C(t)

where the covariance matrix is now defined by
5 (t) = E[(Ax(t) — AX(1))(Ax(t) — AX(1)7]

@ Update the state estimates in real-time in response to observations
z(t) according to above dynamical equation (here we have assumed
a linear observation law); at each time apply the feedback control
Au(Ax(t)) = —R'BTS(t)Ax(t)



Asymptotic stability of the Kalman filter

@ Recall the quadratic cost used for derivation of the Kalman filter was
J = 3(2(t) = Cx(£)) TR} (2(t) — CX(t))

@ The appropriate Lyapunov function for assessment of stability of the
Kalman filter is J(t) = 3(x(t) — %(t)) "= 2(t)(x(t) — X(t))

@ The corresponding algebraic Riccati equation can be derived from
the Riccati equation for ¥: (simply left/right multiply by ¥~1):

) =X Ht)A+ AT Y(t) + 1 (t)DNDT X Y(t) - CTRIC

@ Y 1(t) plays the role of S(t) in the feedback control Riccati
equation

@ Note use of £~ in the Lyapunov function parallels use of R~! in
objective function
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Asymptotic stability of the Kalman filter (cont)

@ Note this Riccati equation is a function of A,C; the condition for
stability is observability of the system

o Letting e(t) = x(t) — X(t), the time-derivative of the Lyapunov
function is

J(e(t)) = —e(t) T[Z~H0)DNDTL1(0) + CTR™1Cle(t),

which is negative definite
@ Thus the estimation error decays to zero as the time over which the
measurements are made approaches infinity.

@ By extending our results on stability of controllable linear feedback
controllers and observable linear filters, the deviation of x(t) and
x(t) — X(t) from zero decay asymptotically for the LQG

@ Since estimation dynamics governed by Z¢(t) = (A — Ke(00)C)e (in
steady-state case, omitting noise terms; check), stability can be
checked by looking at eigenvalues of A — K.(c0)C
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Equilibrium points of (linearized) dynamical systems

o Static equilbria: x(t) does not change with time; i.e., % =

@ For constant control u*, the equilibrium point is where x* = A~ Bu*

@ More generally can have quasistatic equilibria where we subdivide
x(t) into x1(t) and x2(t), and only dxcli—gt) = 0 at the equilibrium; this
occurs if A is singular

@ Note that in general, due to insensitivity of the location of the origin,

we define the origin to be the zero state vector in % = Ax + Bu, but

can generalize to x — x + v; simply shifts the equilibrium point by v
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